UNIT 3: Real vector spaces.

María Barbero Liñán

Universidad Carlos III de Madrid Bachelor in Statistics and Business

Mathematical methods II

2011-2012

A real vector space

is a nonempty set whose elements are called **vectors** and the following operations are defined:

- addition of vectors (u + v ∈ V for all u, v ∈ V) that satisfies the following properties
 - 1 Commutativity: u + v = v + u.
 - 2 Associativity: (u + v) + w = u + (v + w).
 - **3** Identity element u + 0 = 0.
 - **4** Opposite element u + (-u) = 0.
- scalar multiplication (λ v ∈ V for all v ∈ V, λ ∈ ℝ) that satisfies the following properties
 - **1** Distributivity with respect to scalars: $\lambda(u + v) = \lambda u + \lambda v$.
 - **2** Distributivity with respect to vectors: $(\lambda + \mu)u = \lambda u + \mu u$.
 - **3** Associativity: $\lambda(\mu u) = (\lambda \mu)u$.
 - 4 Identity element 1u = u.

for all $u, v, w \in V$, $\lambda, \mu \in \mathbb{R}$.

Example of vector spaces:

- \mathbb{R}^n for every $n \in \mathbb{N}$.
- $M_{m \times n}$, that is, the set of matrices with the same size.
- The set of polynomials with degree less or equal to n.

A subspace of a vector space V is...

a set H of V that satisfies the following three properties:

```
 0 ∈ H,
 if u, v ∈ H, then u + v ∈ H,
 if u ∈ H, λ ∈ ℝ, then λu ∈ H.
```

• Any vector space is a subspace.

• Any subspace is a vector space.

Distinguished subspaces:

- The **zero subspace** $H = \{0\}$. It only contains the identity element with respect to the addition.
- The total subspace H = V.

Other examples of subspaces:

- The only subspaces in \mathbb{R}^2 are the zero subspace, the total subspace and all the straight lines that contain the origin.
- The only subspaces in \mathbb{R}^3 are the zero subspace, the total subspace, the straight lines that contain the origin and all the planes that contain the origin.

A vector $y \in V$ is a linear combination of a set of vectors $\{v_1, \ldots, v_p\}$

if there exist coefficients $\lambda_1, \ldots, \lambda_p \in \mathbb{R}$ such that

$$y = \lambda_1 v_1 + \ldots \lambda_p v_p.$$

The set spanned by $\{v_1, \ldots, v_p\}$, span $\{v_1, \ldots, v_p\}$,

is the set of all the linear combinations of $\{v_1, \ldots, v_p\}$.

The set $H = \text{span} \{v_1, \dots, v_p\}$ is always a vector subspace.

The set of vectors $\{v_1, \ldots, v_p\}$ is the **spanning set for** *H*.

The null subspace of a matrix $A \in M_{m \times n}$ is

$$\operatorname{Nul} A = \{ x \in \mathbb{R}^n \mid Ax = 0_m \}.$$

That is, Nul A is the solution set of the homogeneous system Ax = 0.

Nul *A* is a subspace of \mathbb{R}^n

where n is the number of columns of A.

Method to compute Nul A

- Solve the system of linear equations Ax = 0 by obtaining the row echelon form of the augmented matrix of the system.
- **2** Write the solution of the system in parametric form.

③ Obtain the vectors in the spanning set for the solution set. **Remark:** Nul A has as many vectors in a spanning set as number of free variables of the system Ax = 0. The column space of a matrix $A \in M_{m \times n}$ is

 $\operatorname{Col} A = \{ b \in \mathbb{R}^m \mid Ax = b \text{ for some } x \in \mathbb{R}^n \}.$

$\operatorname{Col} A$ is a subspace of \mathbb{R}^m

where m is the number of rows of A.

Method to compute $\operatorname{Col} A$

- Obtain a matrix in row echelon form row equivalent to A.
- 2 Identify the pivot columns of the matrix in row echelon form.
- The spanning set of Col A is given by the columns corresponding to the pivots columns, but in the given matrix A.

Remark: $\operatorname{Col} A$ has as many vectors in the spanning set as the number of pivot columns in A.

A set of nonzero vectors $\{v_1, \ldots, v_p\}$ is LINEARLY INDEPENDENT if

the unique solution of the vector equation $\lambda_1 v_1 + \cdots + \lambda_p v_p = 0$ is the trivial one, that is, $\lambda_1 = \cdots = \lambda_p = 0$.

That is, the system whose augmented matrix is $(v_1 \dots v_p \dots 0)$ and the unknowns are $\lambda_1, \dots, \lambda_p$ is **consistent with unique solution**.

A set of vectors $\{v_1, \ldots, v_p\}$ is LINEARLY DEPENDENT if

the vector equation $\lambda_1 v_1 + \cdots + \lambda_p v_p = 0$ has infinitely many solutions.

That is, the system whose augmented matrix is $(v_1 \dots v_p \dots 0)$ and the unknowns are $\lambda_1, \dots, \lambda_p$ is consistent with infinitely many solutions.

A set of vectors that contains the zero vector is linearly dependent.

 $B = \{b_1, \dots, b_\rho\}$ is a basis for the subspace H of V if

- *B* is a linearly independent set (l.i.).
- B is a spanning set for H: $H = \operatorname{span}\{b_1, \ldots, b_p\}$.

The standard basis for \mathbb{R}^n

is the set of vectors given by the columns of the identity matrix $I_n = (e_1 | \dots | e_n).$

A basis $B = \{b_1, \ldots, b_p\}$ for H is

- the smallest spanning set of H,
- and the largest set of linearly independent vectors in H.

Dimension of a subspace H

is the number of vectors that a basis $B = \{b_1, \dots, b_p\}$ for H has. dim H = p.

Spanning set theorem.

Let
$$S = \{v_1, \ldots, v_p\}$$
 be a set of vectors in V ,

 $H=\mathrm{span}\,\{v_1,\ldots,v_p\}.$

 If a vector v_k in S is a linear combination of the remaining vectors, then

$$\operatorname{span}\{S - \{v_k\}\} = \operatorname{span}\{v_1, \ldots, v_{k-1}, v_{k+1}, \ldots, v_p\} = H.$$

• If $H \neq \{0\}$, a subset of S is a basis for H.



The rank of a matrix $A \in M_{m \times n}$

is equal to the number of pivot positions in A.

Note that:

- rank $A = \dim \operatorname{Col} A$.
- rank $A \leq \min\{m, n\}$.

Rank theorem.

If $A \in M_{m \times n}$,

 $\operatorname{rank} A + \operatorname{dim} \operatorname{Nul} A = n$ (number of columns in *A*).

Coordinates of a vector x in the basis $B = \{b_1, \ldots, b_p\}$.

$$[x]_B = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}_B = x_1 b_1 + \dots + x_p b_p.$$

Change-of-basis matrix.

Let two bases $B = \{b_1, \ldots, b_p\}$ and $C = \{c_1, \ldots, c_p\}$, the change of coordinates of a vector in the basis B to the basis C is given by

$$[x]_C = P_{CB}[x]_B,$$

where $P_{CB} = ([b_1]_C \dots [b_p]_C)$ is the change-of-basis matrix from *B* to *C*.

$$(P_{CB})^{-1} = P_{BC}$$

A linear transformation T

from a vector space \boldsymbol{V} to another vector space \boldsymbol{W} assigns a vector

 $v \in V$ to a unique vector T(v) in W in such a way that

1
$$T(0) = 0$$

2
$$T(u+v) = T(u) + T(v)$$
 for all $u, v \in V$.

- **3** $T(\lambda u) = \lambda T(u)$ for all $\lambda \in \mathbb{R}$, $u \in V$.
- The kernel of T is the set of all vectors v in V such that
 T(v) = 0.
- The image of T is the set of all vectors w in W such that w = T(v) for some v in V.

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation,

then T has an associated matrix $A \in M_{m \times n}$ such that T(x) = Ax, where $A = \begin{pmatrix} T(e_1) & \dots & T(e_n) \end{pmatrix}$. Moreover: ker T = Nul A, Im T = Col A.

Examples:

- $T_1(x, y, z) = (1, x + y, 3z)$ is NOT a linear transformation because $T(0, 0, 0) = (1, 0, 0) \neq (0, 0, 0)$.
- T₂(x, y) = (x² + y, y) is NOT a linear transformation because the properties 2 and 3 are not satisfied.
- T₃(x, y) = (2x + 3y, -x + y, 4y) IS a linear transformation with an associated matrix of size 3 × 2 because T₃: ℝ² → ℝ³.

$$T_3 = \begin{pmatrix} 2 & 3 \\ -1 & 1 \\ 0 & 4 \end{pmatrix}, \quad T_3 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + 3y \\ -x + y \\ 4y \end{pmatrix} = T_3(x, y)^T.$$

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is...

injective if the only vector x ∈ ℝⁿ such that T(x) = 0 is the zero vector x = 0.

Equivalently, if all the columns of A are linearly independent.

- surjective or onto if each vector b ∈ ℝ^m is the image of some vector x ∈ ℝⁿ, that is, T(x) = b.
 Equivalently, if all the columns of A span ℝ^m.
- one-to-one if it is injective and onto.