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A real vector space

is a nonempty set whose elements are called vectors and the

following operations are defined:

• addition of vectors (u + v ∈ V for all u, v ∈ V ) that

satisfies the following properties

1 Commutativity: u + v = v + u.

2 Associativity: (u + v) + w = u + (v + w).

3 Identity element u + 0 = 0.

4 Opposite element u + (−u) = 0.

• scalar multiplication (λ v ∈ V for all v ∈ V , λ ∈ R) that

satisfies the following properties

1 Distributivity with respect to scalars: λ(u + v) = λu + λv .

2 Distributivity with respect to vectors: (λ+ µ)u = λu + µu.

3 Associativity: λ(µu) = (λµ)u.

4 Identity element 1u = u.

for all u, v ,w ∈ V , λ, µ ∈ R.
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Example of vector spaces:

• Rn for every n ∈ N.

• Mm×n, that is, the set of matrices with the same size.

• The set of polynomials with degree less or equal to n.

A subspace of a vector space V is...

a set H of V that satisfies the following three properties:

1 0 ∈ H,

2 if u, v ∈ H, then u + v ∈ H,

3 if u ∈ H, λ ∈ R, then λu ∈ H.

• Any vector space is a subspace.

• Any subspace is a vector space.
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Distinguished subspaces:

• The zero subspace H = {0}. It only contains the identity

element with respect to the addition.

• The total subspace H = V .

Other examples of subspaces:

• The only subspaces in R2 are the zero subspace, the total

subspace and all the straight lines that contain the origin.

• The only subspaces in R3 are the zero subspace, the total

subspace, the straight lines that contain the origin and all the

planes that contain the origin.
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A vector y ∈ V is a linear combination of a set of

vectors {v1, . . . , vp}
if there exist coefficients λ1, . . . , λp ∈ R such that

y = λ1v1 + . . . λpvp.

The set spanned by {v1, . . . , vp}, span {v1, . . . , vp},
is the set of all the linear combinations of {v1, . . . , vp}.

The set H = span {v1, . . . , vp} is always a vector subspace.

The set of vectors {v1, . . . , vp} is the spanning set for H.
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The null subspace of a matrix A ∈ Mm×n is

NulA = {x ∈ Rn | Ax = 0m}.

That is, NulA is the solution set of the homogeneous system

Ax = 0.

NulA is a subspace of Rn

where n is the number of columns of A.

Method to compute NulA

1 Solve the system of linear equations Ax = 0 by obtaining the

row echelon form of the augmented matrix of the system.

2 Write the solution of the system in parametric form.

3 Obtain the vectors in the spanning set for the solution set.
Remark: NulA has as many vectors in a spanning set as

number of free variables of the system Ax = 0.
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The column space of a matrix A ∈ Mm×n is

ColA = {b ∈ Rm | Ax = b for some x ∈ Rn}.

ColA is a subspace of Rm

where m is the number of rows of A.

Method to compute ColA

1 Obtain a matrix in row echelon form row equivalent to A.

2 Identify the pivot columns of the matrix in row echelon form.

3 The spanning set of ColA is given by the columns

corresponding to the pivots columns, but in the given matrix

A.
Remark: ColA has as many vectors in the spanning set as the

number of pivot columns in A.
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A set of nonzero vectors {v1, . . . , vp} is LINEARLY

INDEPENDENT if

the unique solution of the vector equation λ1v1 + · · ·+ λpvp = 0 is

the trivial one, that is, λ1 = · · · = λp = 0.

That is, the system whose augmented matrix is (v1 . . . vp . . . 0) and

the unknowns are λ1, . . . , λp is consistent with unique solution.

A set of vectors {v1, . . . , vp} is LINEARLY

DEPENDENT if

the vector equation λ1v1 + · · ·+ λpvp = 0 has infinitely many

solutions.

That is, the system whose augmented matrix is (v1 . . . vp . . . 0) and

the unknowns are λ1, . . . , λp is consistent with infinitely many

solutions.

A set of vectors that contains the zero vector is linearly dependent.
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B = {b1, . . . , bp} is a basis for the subspace H of V if

• B is a linearly independent set (l.i.).

• B is a spanning set for H: H = span{b1, . . . , bp}.

The standard basis for Rn

is the set of vectors given by the columns of the identity matrix

In = (e1| . . . |en).

A basis B = {b1, . . . , bp} for H is

• the smallest spanning set of H,

• and the largest set of linearly independent vectors in H.

Dimension of a subspace H

is the number of vectors that a basis B = {b1, . . . , bp} for H has.

dim H = p.
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Spanning set theorem.

Let S = {v1, . . . , vp} be a set of vectors in V ,

H = span {v1, . . . , vp}.

• If a vector vk in S is a linear combination of the remaining

vectors, then

span{S − {vk}} = span{v1, . . . , vk−1, vk+1, . . . , vp} = H.

• If H 6= {0}, a subset of S is a basis for H.

Example:{(
1

0

)}
is l.i., but

it does not span R2.

{(
1

0

)
,

(
1

3

)}
is a basis for R2.

{(
1

0

)
,

(
1

3

)
,

(
1

−2

)}
spans R2,

but they are not l.i.
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The rank of a matrix A ∈ Mm×n

is equal to the number of pivot positions in A.

Note that:

• rankA = dimColA.

• rankA ≤ min {m, n}.

Rank theorem.

If A ∈ Mm×n,

rankA + dimNulA = n (number of columns in A).
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Coordinates of a vector x in the basis B = {b1, . . . , bp}.

[x ]B =


x1
...

xp


B

= x1b1 + · · ·+ xpbp.

Change-of-basis matrix.

Let two bases B = {b1, . . . , bp} and C = {c1, . . . , cp}, the change

of coordinates of a vector in the basis B to the basis C is given by

[x ]C = PCB [x ]B ,

where PCB =
(

[b1]C . . . [bp]C

)
is the change-of-basis matrix from B to C .

(PCB)−1 = PBC
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A linear transformation T

from a vector space V to another vector space W assigns a vector

v ∈ V to a unique vector T (v) in W in such a way that

1 T (0) = 0,

2 T (u + v) = T (u) + T (v) for all u, v ∈ V .

3 T (λu) = λT (u) for all λ ∈ R, u ∈ V .

• The kernel of T is the set of all vectors v in V such that

T (v) = 0.

• The image of T is the set of all vectors w in W such that

w = T (v) for some v in V .

If T : Rn → Rm is a linear transformation,

then T has an associated matrix A ∈ Mm×n such that T (x) = Ax ,

where A =
(
T (e1) . . . T (en)

)
.

Moreover: ker T = Nul A, Im T = Col A.
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Examples:

• T1(x , y , z) = (1, x + y , 3z) is NOT a linear transformation because

T (0, 0, 0) = (1, 0, 0) 6= (0, 0, 0).

• T2(x , y) = (x2 + y , y) is NOT a linear transformation because the

properties 2 and 3 are not satisfied.

• T3(x , y) = (2x + 3y ,−x + y , 4y) IS a linear transformation with an

associated matrix of size 3× 2 because T3 : R2 → R3.

T3 =

 2 3

−1 1

0 4

 , T3

(
x

y

)
=

2x + 3y

−x + y

4y

 = T3(x , y)T .
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A linear transformation T : Rn → Rm is...

• injective if the only vector x ∈ Rn such that T (x) = 0 is the zero

vector x = 0.

Equivalently, if all the columns of A are linearly independent.

• surjective or onto if each vector b ∈ Rm is the image of some

vector x ∈ Rn, that is, T (x) = b.

Equivalently, if all the columns of A span Rm.

• one-to-one if it is injective and onto.
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