UNIT 4: Eigenvalues and eigenvectors. Diagonalization.

María Barbero Liñán

Universidad Carlos III de Madrid Bachelor in Statistics and Business

Mathematical methods II

2011-2012

Let A be a square matrix, $A \in M_{n \times n}$.

An eigenvector of A is a nonzero vector x such that

 $Ax = \lambda x$ for some $\lambda \in \mathbb{R}$.

A scalar λ is an **eigenvalue of** A if there exists a nontrivial solution x of $Ax = \lambda x$.

The vector x is an **eigenvector of** A corresponding with λ .

To find the eigenvalues of A:

• Find the characteristic polynomial of A given by $P_{A}(x) = \frac{1}{2} \frac{1}{2$

$$P_A(\lambda) = \det(A - \lambda I).$$

② Find the roots of the polynomial, that is, find λ in the equation $P_A(\lambda) = 0$.

To find the eigenvectors of A corresponding to the eigenvalue λ :

• Find the nullspace of the matrix $A - \lambda I_n$.

The vector space of eigenvectors of the eigenvalue λ is denoted by $V(\lambda)$. Then,

 $V(\lambda) = \operatorname{Nul}(A - \lambda I_n).$

If the real number 0 is an eigenvalue of A,

 $\det\left(A-0\mathrm{I}_n\right)=\det A=0.$

Then A is not invertible.

For each eigenvalue we define:

- the algebraic multiplicity n_λ as the multiplicity of λ as a root of the characteristic polynomial.
- the geometric multiplicity m_λ as the dimension of the subspace of eigenvectors of eigenvalue λ, m_λ = dim V(λ).

It is always true that $m_{\lambda} \leq n_{\lambda}$.

A square matrix $A \in M_{n \times n}$ is diagonalizable...

if there exist an invertible matrix P and a diagonal matrix D, both with size $n \times n$, such that

$$A = PDP^{-1}.$$

It is said that A is **similar** to D.

The following statements are equivalent:

- 1 A is diagonalizable.
- 2 A has *n* linearly independent eigenvectors.
- **3** $\sum_{i=1}^{k} n_{\lambda_i} = n$ y $n_{\lambda_i} = m_{\lambda_i}$ for each i = 1, ..., k, where k is the number of different eigenvalues of A.
- **4** There exists a basis of \mathbb{R}^n that consists only of eigenvectors.

Theorem.

Thel set of eigenvectors $\{v_1, \ldots, v_p\}$ corresponding to different eigenvalues $\lambda_1, \ldots, \lambda_p$ of a $n \times n$ matrix A is linearly independent.

Consequences of the theorem:

If A has n different eigenvalues, then A is diagonalizable.

Steps to diagonalize a matrix:

1 Find the eigenvalues of A by solving $det(A - \lambda I_n) = 0$.

- From the linear decomposition of the characteristic polynomial we obtain the algebraic multiplicity of each eigenvalue.
- **2** Find the eigenvectors corresponding to each eigenvalue, that is, find the spanning set of $Nul(A \lambda I_n)$.
 - The dimension of Nul(A λI_n) gives the geometric multiplicity of the eigenvalue.
- Obtermine if the matrix is diagonalizable or not by using the equivalent statements in the previous slide.

Steps to diagonalize a matrix:

4 If A is diagonalizable, find the matrices P and D.

- The columns of *P* are the eigenvectors.
- The entries in the main diagonal of D are the eigenvalues of A, in the same order as the corresponding eigenvectors in P.

 $\lambda_1 \ldots$

 $0 \lambda_2 \dots 0$

Example:
$$P = (v_{\lambda_1} v_{\lambda_2} \dots v_{\lambda_n}), \quad D = \begin{pmatrix} 0 & \lambda_2 \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}$$

5 Check that $A = PDP^{-1}$.

Example: Diagonalize the following matrix.

/

`

$$A = \begin{pmatrix} 2 & 3 \\ 3 & -6 \end{pmatrix}.$$

$$P_{A}(\lambda) = |A - \lambda I_{2}| = \begin{vmatrix} 2 - \lambda & 3 \\ 3 & -6 - \lambda \end{vmatrix} = \lambda^{2} + 4\lambda - 21.$$
From $P_{A}(\lambda) = 0$ we obtain two eigenvalues $\lambda_{1} = 3$ and $\lambda_{2} = -7.$ Then $n_{\lambda_{1}} = n_{\lambda_{2}} = 1.$

$$Nul(A - \lambda_{1}I) = Nul\begin{pmatrix} -1 & 3 \\ 3 & -9 \end{pmatrix} = span\left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\} = V(3).$$
Nul $(A - \lambda_{2}I) = Nul\begin{pmatrix} 9 & 3 \\ 3 & 1 \end{pmatrix} = span\left\{ \begin{pmatrix} 1 \\ -3 \end{pmatrix} \right\} = V(-7).$
The geometric multiplicity of both eigenvalues is $1 = m_{\lambda_{1}} = m_{\lambda_{2}}.$

Example: Diagonalize the following matrix.

3 The matrix A is diagonalizable because $n_{\lambda_1} + n_{\lambda_2} = 2$,

$$n_{\lambda_1} = m_{\lambda_1} = 1, \ n_{\lambda_2} = m_{\lambda_2} = 1.$$

$$4 P = \begin{pmatrix} 3 & 1 \\ 1 & -3 \end{pmatrix}, \ D = \begin{pmatrix} 3 & 0 \\ 0 & -7 \end{pmatrix}.$$

$$5$$

$$A = PDP^{-1} = (PD)P^{-1} = \begin{pmatrix} 9 & -7 \\ 3 & 21 \end{pmatrix} \frac{1}{-10} \begin{pmatrix} -3 & -1 \\ -1 & 3 \end{pmatrix}$$
$$= \frac{1}{-10} \begin{pmatrix} 20 & -30 \\ -30 & 60 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & -6 \end{pmatrix}.$$