Unit 5: Orthogonality and least square problems.

María Barbero Liñán

Universidad Carlos III de Madrid Bachelor in Statistics and Business

Mathematical methods II

2011-2012

Let $u, v \in \mathbb{R}^n$. The inner product of u and v is defined by

$$u \cdot v = u^T v = (u_1, u_2, \dots, u_n) \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n.$$

Properties: For $u, v, w \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$,

•
$$u \cdot v = v \cdot u$$
.

•
$$(u+v) \cdot w = u \cdot w + v \cdot w$$
.

•
$$(\lambda u) \cdot v = \lambda(u \cdot v) = u \cdot (\lambda v).$$

•
$$u \cdot u \ge 0$$
, $u \cdot u = 0$ if and only if $u = 0_n$.

The norm or length of $v \in \mathbb{R}^n$ is a nonnegative real number given by

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{\mathbf{v}_1^2 + \dots + \mathbf{v}_n^2}.$$

A vector v is unit if ||v|| = 1.

If v is not unit, it can be normalized by computing $\frac{v}{\|v\|}$.

Properties:

- $u \cdot v = ||u|| ||v|| \cos \theta$.
- $\|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\|.$

The distance between two vectors u and v is...

the length of the vector $||u - v|| = \operatorname{dist}(u, v)$.

Two vectors are orthogonal, $u \perp v$, if and only if...

 $u \cdot v = 0.$

A set of vectors $\{v_1, \ldots, v_p\}$ in \mathbb{R}^n is ORTHOGONAL

if each pair of different vectors in the set is orthogonal, that is,

$$v_i \cdot v_j = 0$$
 for all $i \neq j$.

The orthogonal subspace of a subspace H in \mathbb{R}^n .

$$H^{\perp} = \{ w \in \mathbb{R}^n \mid w \cdot v = 0 \text{ for all } v \in H \}.$$

- H^{\perp} is a subspace in \mathbb{R}^n .
- *w* is orthogonal to *H* if and only if *w* is orthogonal to each vector of the spanning set of *H*.

A set of vectors $\{v_1, \ldots, v_p\}$ in \mathbb{R}^n is ORTHONORMAL if the set of vectors is orthogonal and all the vectors are unit, that is,

 $v_i \cdot v_j = 0$ for all $i \neq j$, $v_i \cdot v_i = 1$ for all $i = 1, \dots, p$.

- An orthogonal basis is a basis whose vectors are an orthogonal set of vectors.
- An orthonormal basis is a basis whose vectors are an orthonormal set of vectors.

If a SQUARE matrix $A \in M_{n \times n}$ is ORTHOGONAL,

the rows of A are an orthonormal basis for \mathbb{R}^n . $AA^T = A^T A = I_n$.

The orthogonal projection of v onto a subspace W spanned by a set of linearly independent vectors a_1, \ldots, a_p ,

$$\operatorname{proj}_W v = A(A^T A)^{-1} A^T v$$
, where $A = (a_1 \dots a_p)$.

If $\{a_1, \ldots, a_p\}$ is an orthogonal basis for W, then

$$\operatorname{proj}_W v = \frac{v \cdot a_1}{a_1 \cdot a_1} a_1 + \dots + \frac{v \cdot a_p}{a_p \cdot a_p} a_p.$$

The orthogonal projection does not depend on the basis for W taken.

Orthogonal decomposition theorem.

Let W be a subspace of \mathbb{R}^n . Any vector v in \mathbb{R}^n is uniquely written as the sum of two vectors

 $v = p_W + e$

such that $p_W = \operatorname{proj}_W v \in W$ and $e \in W^{\perp}$.

The best approximation theorem.

The vector $\operatorname{proj}_W v$ is the closest point in W to v, in the sense that,

$$\|v-p_W\|<\|v-\widehat{v}\|$$

for all $\hat{v} \in W$ distinct from p_W .

$\|\boldsymbol{v} - \boldsymbol{p}_{\boldsymbol{W}}\| = \operatorname{dist}(\boldsymbol{v}, \boldsymbol{W})\|$

is the distance from a point to a subspace.

If
$$v \in W$$
, then $dist(v, W) = 0$.

Find the distance from $v = (-1, -5, 10)^T$ to the subspace W spanned by $u_1 = (5, -2, 1)^T$ y $u_2 = (1, 2, -1)^T$.

1 Note that the inner product
$$u_1 \cdot u_2 = 5 - 4 - 1 = 0$$
.

O Then

$$p_{W} = \frac{v \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} + \frac{v \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2} = \frac{15}{30} u_{1} + \frac{-21}{6} u_{2} = \begin{pmatrix} -1 \\ -8 \\ 4 \end{pmatrix}.$$

$$\texttt{(ist}(v, W) = ||v - p_{W}|| = \left\| \begin{pmatrix} 0 \\ 3 \\ 6 \end{pmatrix} \right\| = \sqrt{0^{2} + 3^{2} + 6^{2}} = 3\sqrt{5}.$$

Least-square problem.

- **1** Consider a system Ax = b, in general, inconsistent, where $A \in M_{m \times n}$, $b \in \mathbb{R}^m$.
- **2** A least-square solution of Ax = b is $\hat{x} \in \mathbb{R}^n$ such that

$$\|b - A\widehat{x}\| \le \|b - Ax\|$$
 for all $x \in \mathbb{R}^n$.

- **(3)** The least-squares solutions are the **solutions of the normal** equations: $A^T A x = A^T b$.
- **4** Least-square error of the approximation is $dist(b, A\hat{x})$.

There exists a unique least-square solution for each $b \in \mathbb{R}^m$

- if and only if $A^T A$ is invertible,
- if and only if the columns of A are linearly independent.

Gram-Schmidt process.

Let $\{a_1, \ldots, a_k\}$ be a basis for the subspace H in \mathbb{R}^n .

STEP 1:
$$q_1 = a_1$$
.
STEP 2: $q_2 = a_2 - \operatorname{proj}_W a_2 = a_2 - \frac{a_2 \cdot q_1}{q_1 \cdot q_1} q_1$,
where $W = \operatorname{span}\{q_1\}$.
STEP 3: $q_3 = a_3 - \operatorname{proj}_W a_3 = a_3 - \frac{a_3 \cdot q_1}{q_1 \cdot q_1} q_1 - \frac{a_3 \cdot q_2}{q_2 \cdot q_2} q_2$,
where $W = \operatorname{span}\{q_1, q_2\}$.
:
STEP k: $q_k = a_k - \operatorname{proj}_W a_k = a_k - \frac{a_k \cdot q_1}{q_1 \cdot q_1} q_1 - \cdots - \frac{a_k \cdot q_k}{q_k \cdot q_k} q_k$,
where $W = \operatorname{span}\{q_1, \dots, q_k\}$.
Then:
• $\{q_1, \dots, q_k\}$ is an orthogonal basis for H .

•{ w_1, \ldots, w_k } = $\left\{\frac{q_1}{\|q_1\|}, \ldots, \frac{q_k}{\|q_k\|}\right\}$ is an orthonormal basis for H.