UNIT 6: The singular value decomposition.

María Barbero Liñán

Universidad Carlos III de Madrid Bachelor in Statistics and Business

Mathematical methods II

2011-2012

- A square matrix is symmetric if $A^T = A$.
- A square matrix A is orthogonally diagonalizable if there exist an orthogonal matrix P and a diagonal matrix D such that

$$A = PDP^{T} = PDP^{-1},$$

where P, D and A have all the same size.

Remember that...

an orthogonal matrix satisfies $P^T = P^{-1}$.

Theorems.

 A n × n matrix A orthogonally diagonalize if and only if A is a symmetric matrix.

2 Let A be a symmetric matrix. The eigenvectors of different eigenvalues are orthogonal.

Steps to orthogonally diagonalize a matrix A.

- Find the eigenvalues of A, which are the zeroes of the characteristic polynomial, P_A(λ) = det(A λI_n).
- Pind the eigenvectors of each eigenvalue.
 - If an eigenvalue has more than one eigenvector, check if they are orthogonal.
 - If they are not orthogonal, obtain an othogonal basis by Gram-Schmidt method.
- **③** Normalize those eigenvectors that are not unit.
- The columns of P are the eigenvectors which determine a set of orthonormal vectors.
- The diagonal matrix D has the eigenvalues in the main diagonal in the same order as the eigenvectors in P.

A VECTOR NORM is...

a function $\|\cdot\| \colon \mathbb{R} \to V$ that assigns a real-valued length to each vector in V and satisfies the following conditions:

1
$$||x|| \ge 0$$
 and $||x|| = 0$ if and only if $x = 0$.

- **2** $||x + y|| \le ||x|| + ||y||.$
- $\|\lambda x\| = |\lambda| \|x\|.$

Examples of norms in \mathbb{R}^n .

- Euclidean norm or 2-norm: $||x||_2 = \sqrt{x_1^2 + \cdots + x_n^2}$ (the usual one).
- **2** 1-norm: $||x||_1 = |x_1| + \cdots + |x_n|$.
- **③ Infinity norm:** $||x||_{\infty} = \max\{|x_1|, \ldots, |x_n|\}.$

The matrix norm of $A \in M_{m \times n}$ is defined as follows

Examples of matrix norms.

$$\|A\|_1 = \max_{\|x\|_1=1} \|Ax\|_1 = \max_{1 \le k \le n} \left\{ \sum_{j=1}^m |a_{jk}| \right\}.$$

It is the maximum of the 1-norm of each column of the matrix.

$$||A||_{\infty} = \max_{\|x\|_{\infty}=1} ||Ax||_{\infty} = \max_{1 \le k \le m} \left\{ \sum_{j=1}^{n} |a_{kj}| \right\}.$$

It is the maximum of the 1-norm of each row of the matrix.

The singular values σ of $A \in M_{m \times n}$

are the square roots of the eigenvalues λ of the square matrix $A^{T}A,$ that is,

$$\sigma = \sqrt{\lambda},$$

where λ are the zeroes of the characteristic polynomial of $A^T A$, $P_{A^T A}(\lambda) = \det(A^T A - \lambda I_n).$

REMARK:

The matrix $A^T A$ is square and symmetric. It has size $n \times n$.

$$\|A\|_2 = \max\{\sigma_1, \ldots, \sigma_r\}$$

where r is the number of the singular values of A.

The rank of A is equal to the number of nonzero singular values.

The image of the unit sphere...

under any matrix A of size $m \times n$ is an hyperellipse.

An hyperellipse is...

a surface obtained by stretching the unit sphere in \mathbb{R}^n by some factors $\sigma_1, \ldots \sigma_r$ in some orthogonal directions.

The principal semiaxes of the hyperellipse are Av_i ,

where v_i 's are the eigenvectors of $A^T A$, and the semiaxes have length σ_i .

Singular value decomposition theorem (SVD).

Let A be a $m \times n$ matrix with rank r. Then there exists a unique $m \times n$ matrix, $\Sigma = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$, for which the diagonal entries in the $r \times r$ matrix D are the r singular values of A, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$; and there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

 $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathsf{T}}.$

REMARK:

- The matrices U and V are not uniquely determined.
- The columns of U are called left singular vectors of A.
- The columns of V are called **right singular vectors of** A.

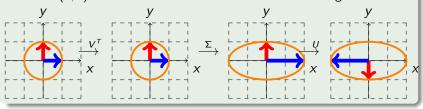
Steps to find the SVD of a $m \times n$ matrix A with $m \ge n$:

- Find the eigenvalues \(\lambda\) of \(A^T A\) and a set of ORTHONORMAL eigenvectors. (Use the Gram-Schmidt method to orthogonalize and normalize whenever is necessary).
- Pind Σ by writing the singular values √λ in decreasing order in the main diagonal. The remaining entries of the matrix are zero up to obtain a m × n matrix, the same size as A.
- Find V whose columns are the set of orthonormal eigenvectors written in the same order as the singular values in Σ. The size of V is n × n.
- (a) Find U whose size is $m \times m$ and whose columns are: (a) $u_i = \frac{1}{\sigma_i} A v_i$.
 - ② Complete {u₁,..., u_n} to an orthonormal basis for ℝ^m computing the orthogonal subspace of {u₁,..., u_n} and normalizing the spanning set of it.

Example of SVD of A.

$$A = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \text{Rotate} & \text{Stretch Rotate} \\ \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = U \Sigma V^{T}$$

The image of the unit sphere in \mathbb{R}^2 under A is an ellipse in \mathbb{R}^2 with center at (0,0) and semiaxis over the coordinate axis of length 2 and 1.



Reduced SVD

Let A be a $m \times n$ matrix with $m \ge n$ and SVD given by $U\Sigma V^T$. The **reduced singular valued decomposition** of A is given by

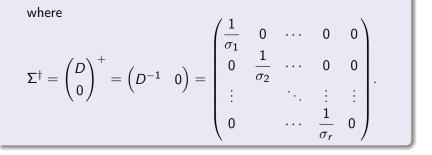
$$A = \begin{pmatrix} u_1 & \dots & u_n & u_{n+1} & \dots & u_m \end{pmatrix} \begin{pmatrix} D_{n \times n} \\ 0_{(m-n) \times n} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_n \end{pmatrix}$$
$$= \begin{pmatrix} u_1 & \dots & u_n & u_{n+1} & \dots & u_m \end{pmatrix} \begin{pmatrix} D_{n \times n} V^T \\ 0_{(m-n) \times n} \end{pmatrix}$$
$$= \begin{pmatrix} u_1 & \dots & u_n \end{pmatrix} D_{n \times n} V^T.$$

Remark: Note that to obtain the reduced singular value decomposition of A we do not need to extend the singular vectors in V to obtain a $m \times m$ matrix for U, we only use the left most $m \times n$ submatrix of U.

Moore-Penrose pseudoinverse A^{\dagger} of A.

- If A is an invertible matrix, then $\mathbf{A}^{\dagger} = \mathbf{A}^{-1}$.
- If A is a m × n matrix with m ≥ n and SVD given by UΣV^T, then the Moore-Penrose pseudoinverse matrix is a n × m matrix given by

$$\mathbf{A}^{\dagger} = (\mathbf{V}^{\mathsf{T}})^{-1} \mathbf{\Sigma}^{\dagger} \mathbf{U}^{-1} = \mathbf{V} \mathbf{\Sigma}^{\dagger} \mathbf{U}^{\mathsf{T}},$$



Properties of the Moore-Penrose pseudoinverse:

- $AA^{\dagger}A = A.$
- $2 A^{\dagger}AA^{\dagger} = A^{\dagger}.$
- $(AA^{\dagger})^{T} = AA^{\dagger}.$

$$(A^{\dagger}A)^{T} = A^{\dagger}A.$$

Application

When m > n, the Moore-Penrose pseudoinverse matrix gives a least-square solution of Ax = b.

- If A has full rank, A[†] = (A^TA)⁻¹A^T.
 (Note: A[†]b is a least-square solution of Ax = b and it is exactly the solution to the normal equations in UNIT 5.)
- If A does not have full rank, we need SVD to obtain A[†]. A least-square solution of Ax = b is given by A[†]b.

More details on the previous application when A does not have full rank

- Find the SVD of A: $A = U\Sigma V^T$.
- **2** A least-square solution of Ax = b is given by $A^{\dagger}b$ because

$$U\Sigma V^{T})x = Ax = b,$$

$$(U^{T}U)\Sigma V^{T}x = U^{T}b,$$

$$\Sigma^{\dagger}\Sigma V^{T}x = \Sigma^{\dagger}U^{T}b \text{ because } \Sigma^{\dagger}\Sigma = I_{n \times n},$$

$$(VV^{T})x = V\Sigma^{\dagger}U^{T}b,$$

$$\mathbf{x} = \mathbf{V}\Sigma^{\dagger}\mathbf{U}^{T}\mathbf{b} = \mathbf{A}^{\dagger}\mathbf{b}.$$

Remark: Remember that the SVD is not unique because the matrices U and V are not unique. Hence, depending on the SVD we find different least-square solutions of Ax = b.