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• A square matrix is symmetric if AT = A.

• A square matrix A is orthogonally diagonalizable if there

exist an orthogonal matrix P and a diagonal matrix D such

that

A = PDPT = PDP−1,

where P, D and A have all the same size.

Remember that...

an orthogonal matrix satisfies PT = P−1.

Theorems.

1 A n × n matrix A orthogonally diagonalize if and only if A

is a symmetric matrix.

2 Let A be a symmetric matrix. The eigenvectors of different

eigenvalues are orthogonal.

2 /14



Steps to orthogonally diagonalize a matrix A.

1 Find the eigenvalues of A, which are the zeroes of the

characteristic polynomial, PA(λ) = det(A− λIn).

2 Find the eigenvectors of each eigenvalue.

1 If an eigenvalue has more than one eigenvector, check if they

are orthogonal.

2 If they are not orthogonal, obtain an othogonal basis by

Gram-Schmidt method.

3 Normalize those eigenvectors that are not unit.

4 The columns of P are the eigenvectors which determine a set

of orthonormal vectors.

5 The diagonal matrix D has the eigenvalues in the main

diagonal in the same order as the eigenvectors in P.
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A VECTOR NORM is...

a function ‖ · ‖ : R→ V that assigns a real-valued length to each

vector in V and satisfies the following conditions:

1 ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.

2 ‖x + y‖ ≤ ‖x‖+ ‖y‖.

3 ‖λx‖ = |λ|‖x‖.

Examples of norms in Rn.

1 Euclidean norm or 2-norm: ‖x‖2 =
√
x2

1 + · · ·+ x2
n

(the usual one).

2 1-norm: ‖x‖1 = |x1|+ · · ·+ |xn|.

3 Infinity norm: ‖x‖∞ = max{|x1|, . . . , |xn|}.
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The matrix norm of A ∈ Mm×n is defined as follows

‖A‖(m,n) = max
x∈Rn

x 6=0

‖Ax‖(m)

‖x‖(n)
= max

x∈Rn

‖x‖(n)=1

‖Ax‖(m).

Examples of matrix norms.

1 ‖A‖1 = max
‖x‖1=1

‖Ax‖1 = max
1≤k≤n


m∑
j=1

|ajk |

.

It is the maximum of the 1-norm of each column of the matrix.

2 ‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞ = max
1≤k≤m


n∑

j=1

|akj |

.

It is the maximum of the 1-norm of each row of the matrix.
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The singular values σ of A ∈ Mm×n

are the square roots of the eigenvalues λ of the square matrix

ATA, that is,

σ =
√
λ,

where λ are the zeroes of the characteristic polynomial of ATA,

PATA(λ) = det(ATA− λIn).

REMARK:

The matrix ATA is square and symmetric. It has size n × n.

‖A‖2 = max{σ1, . . . , σr}
where r is the number of the singular values of A.

The rank of A is equal to the number of nonzero

singular values.
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The image of the unit sphere...

under any matrix A of size m × n is an hyperellipse.

An hyperellipse is...

a surface obtained by stretching the unit sphere in Rn by some

factors σ1, . . . σr in some orthogonal directions.

The principal semiaxes of the hyperellipse are Avi ,

where vi ’s are the eigenvectors of ATA, and the semiaxes have

length σi .

7 /14



Singular value decomposition theorem (SVD).

Let A be a m × n matrix with rank r . Then there exists a unique

m × n matrix, Σ =

(
D 0

0 0

)
, for which the diagonal entries in the

r × r matrix D are the r singular values of A,

σ1 ≥ σ2 ≥ · · · ≥ σr > 0; and there exist an m ×m orthogonal

matrix U and an n × n orthogonal matrix V such that

A = UΣVT.

REMARK:

• The matrices U and V are not uniquely determined.

• The columns of U are called left singular vectors of A.

• The columns of V are called right singular vectors of A.
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Steps to find the SVD of a m × n matrix A with m ≥ n:

1 Find the eigenvalues λ of ATA and a set of ORTHONORMAL

eigenvectors. (Use the Gram-Schmidt method to orthogonalize

and normalize whenever is necessary).

2 Find Σ by writing the singular values
√
λ in decreasing order

in the main diagonal. The remaining entries of the matrix are

zero up to obtain a m × n matrix, the same size as A.

3 Find V whose columns are the set of orthonormal

eigenvectors written in the same order as the singular values

in Σ. The size of V is n × n.

4 Find U whose size is m ×m and whose columns are:

1 ui =
1

σi
Avi .

2 Complete {u1, . . . , un} to an orthonormal basis for Rm

computing the orthogonal subspace of {u1, . . . , un} and

normalizing the spanning set of it.
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Example of SVD of A.

A =

(
−2 0

0 −1

)
=

Rotate(
−1 0

0 −1

) Stretch(
2 0

0 1

) Rotate(
1 0

0 1

)
= UΣV T

The image of the unit sphere in R2 under A is an ellipse in R2 with

center at (0, 0) and semiaxis over the coordinate axis of length 2 and 1.

x

y

V T

−→
x

y

Σ−→
x

y

U−→
x

y
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Reduced SVD

Let A be a m × n matrix with m ≥ n and SVD given by UΣV T .

The reduced singular valued decomposition of A is given by

A =
(
u1 . . . un un+1 . . . um

)( Dn×n

0(m−n)×n

)v1

v2

vn


=

(
u1 . . . un un+1 . . . um

)(Dn×nV
T

0(m−n)×n

)
=

(
u1 . . . un

)
Dn×nV

T .

Remark: Note that to obtain the reduced singular value

decomposition of A we do not need to extend the singular vectors

in V to obtain a m ×m matrix for U, we only use the left most

m × n submatrix of U.
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Moore-Penrose pseudoinverse A† of A.

• If A is an invertible matrix, then A† = A−1.

• If A is a m × n matrix with m ≥ n and SVD given by UΣV T ,

then the Moore-Penrose pseudoinverse matrix is a n ×m

matrix given by

A† = (VT)−1Σ†U−1 = VΣ†UT,

where

Σ† =

(
D

0

)+

=
(
D−1 0

)
=



1

σ1
0 · · · 0 0

0
1

σ2
· · · 0 0

...
. . .

...
...

0 · · · 1

σr
0


.

12 /14



Properties of the Moore-Penrose pseudoinverse:

1 AA†A = A.

2 A†AA† = A†.

3 (AA†)T = AA†.

4 (A†A)T = A†A.

Application

When m > n, the Moore-Penrose pseudoinverse matrix gives a

least-square solution of Ax = b.

• If A has full rank, A† = (ATA)−1AT.

(Note: A†b is a least-square solution of Ax = b and it is exactly the

solution to the normal equations in UNIT 5.)

• If A does not have full rank, we need SVD to obtain A†. A

least-square solution of Ax = b is given by A†b.
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More details on the previous application when A does

not have full rank

1 Find the SVD of A: A = UΣV T .

2 A least-square solution of Ax = b is given by A†b because

(UΣV T )x = Ax = b,

(UTU)ΣV T x = UTb,

Σ†ΣV T x = Σ†UTb because Σ†Σ = In×n,

(VV T )x = VΣ†UTb,

x = VΣ†UTb = A†b.

Remark: Remember that the SVD is not unique because the

matrices U and V are not unique. Hence, depending on the SVD

we find different least-square solutions of Ax = b.
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