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e A square matrix is symmetric if AT = A.

e A square matrix A is orthogonally diagonalizable if there
exist an orthogonal matrix P and a diagonal matrix D such
that

A= PDPT = PDP!,

where P, D and A have all the same size.

Remember that..

an orthogonal matrix satisfies P7 = P~ 1,

@ A n x n matrix A orthogonally diagonalize if and only if A
is @ symmetric matrix.

® Let A be a symmetric matrix. The eigenvectors of different
eigenvalues are orthogonal.
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Steps to orthogonally diagonalize a matrix A.

@ Find the eigenvalues of A, which are the zeroes of the
characteristic polynomial, Pa(A) = det(A — AL,).

® Find the eigenvectors of each eigenvalue.

@ If an eigenvalue has more than one eigenvector, check if they
are orthogonal.

® If they are not orthogonal, obtain an othogonal basis by
Gram-Schmidt method.

® Normalize those eigenvectors that are not unit.

@ The columns of P are the eigenvectors which determine a set

of orthonormal vectors.

® The diagonal matrix D has the eigenvalues in the main

diagonal in the same order as the eigenvectors in P.
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A VECTOR NORM is...

a function || - ||: R — V that assigns a real-valued length to each

vector in V and satisfies the following conditions:
® | x| >0 and ||x]| = 0 if and only if x =0.
@ [Ix +yll < [Ix]| + llyll-
® [|Ax]| = [Afl|x]l-

| A\

Examples of norms in R”.

©® Euclidean norm or 2-norm: ||x|]2 = y/x? + -+ + x2
(the usual one).

® l-norm: ||x||1 = |x1| + -+ |xnl-

® Infinity norm: ||x|loc = max{|x1|,..., [xal}.

N
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The matrix norm of A € M,,«, is defined as follows

[[AX]| (m)

[All(m,my = max TNy~ M ([ AX]| (m)
xER" (n) xER"
x7#0 lIxll(n)=1

Examples of matrix norms.
m

© Al = max [[Ax|y = max ¢ |ajl

[|x]l1= 1<k<n

j=1
It is the maximum of the 1-norm of each column of the matrix.
n
® Al = max, [4xls = max 33l

It is the maximum of the 1-norm of each row of the matrix.
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The singular values o of A € M,

are the square roots of the eigenvalues A of the square matrix
ATA, that is,
o=V

where ) are the zeroes of the characteristic polynomial of AT A,
Para(A) = det(ATA — AI,).

The matrix AT A is square and symmetric. It has size n x n.

|All2 = max{o1,...,0:}

where r is the number of the singular values of A.

The rank of A is equal to the number of nonzero

singular values.
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The image of the unit sphere...

under any matrix A of size m x nis an hyperellipse.

An hyperellipse is...
a surface obtained by stretching the unit sphere in R" by some

factors o1,...0, in some orthogonal directions.

| A\

The principal semiaxes of the hyperellipse are Av;,

where v;'s are the eigenvectors of AT A, and the semiaxes have

length o;.
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Singular value decomposition theorem (SVD).

Let A be a m x n matrix with rank r. Then there exists a unique
D 0
m X n matrix, X = (O O), for which the diagonal entries in the

r x r matrix D are the r singular values of A,
01> 09 > --- >0, > 0; and there exist an m x m orthogonal

matrix U and an n X n orthogonal matrix V such that

A=UxVT.

REMARK:

e The matrices U and V are not uniquely determined.

| \

e The columns of U are called left singular vectors of A.

® The columns of V are called right singular vectors of A.

N
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Steps to find the SVD of a m x n matrix A with m > n:

© Find the eigenvalues \ of A7 A and a set of ORTHONORMAL

eigenvectors. (Use the Gram-Schmidt method to orthogonalize

and normalize whenever is necessary).

® Find X by writing the singular values v/\ in decreasing order
in the main diagonal. The remaining entries of the matrix are
zero up to obtain a m X n matrix, the same size as A.

® Find V whose columns are the set of orthonormal

eigenvectors written in the same order as the singular values

in X. The size of V is n x n.

® Find U whose size is m x m and whose columns are:

1
9 up = fAV,'.
o
® Complete {uy,...,u,} to an orthonormal basis for R”
computing the orthogonal subspace of {uy,...,u,} and

normalizing the spanning set of it.
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Example of SVD of A.
Rotate  Stretch Rotate

(2 )

The image of the unit sphere in R? under A is an ellipse in R? with

center at (0,0) and semiaxis over the coordinate axis of length 2 and 1.

F=T-=~-r-n F=T-~-r-n F=T-~-r-n

1 1 1 1 1 1 1 1 1
= L -4 L - d L -4 L - d

1 1 1 1 IU 1 1 1 1

1 1 1 1 1

1 1 T T 1

1 K‘ 1 ' X 1 | X
I P = 7 = o P = 7 = o

1 1 1 1 1 1 1 1 1
L L_oa__lo_L_2 L_oa__lo_L_2

\
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Reduced SVD

Let A be a m x n matrix with m > n and SVD given by UX V.
The reduced singular valued decomposition of A is given by

Vi
A = (ul cee Up Upyl .. Um) <0(ann ) Vs

m—n)x v,
Dpsenv

= (Ul Up Upy1 ... um)
0(m—n)><n

= (ul u,,>D,,X,,VT.

Remark: Note that to obtain the reduced singular value
decomposition of A we do not need to extend the singular vectors
in V to obtain a m X m matrix for U, we only use the left most

m X n submatrix of U.
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Moore-Penrose pseudoinverse A’ of A.
e If Ais an invertible matrix, then AT = A~1.
e If Aisa m x n matrix with m > n and SVD given by UX VT,
then the Moore-Penrose pseudoinverse matrix is a n X m

matrix given by

Af = (v ixziyu—l = vxiuT,

where "
— 0 0O 0
01
p\ " o L 0 0
ZT = < ) = (D_l O) = 02
0 .
1
0 — 0
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Properties of the Moore-Penrose pseudoinverse:

0 AATA= A

0 AtAAT = At
© (AAN)T = AAT.
o (ATA)T = AfA.

| A\

Application

When m > n, the Moore-Penrose pseudoinverse matrix gives a
least-square solution of Ax = b.

e If A has full rank, AT = (ATA)"1AT.

(Note: Afb is a least-square solution of Ax = b and it is exactly the

solution to the normal equations in UNIT 5.)

e If A does not have full rank, we need SVD to obtain AT. A
least-square solution of Ax = b is given by Afb.
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More details on the previous application when A does
not have full rank

©® Find the SVD of A: A= ULV,

® A least-square solution of Ax = b is given by Afb because

(UZVT)x = Ax = b,
(UTU)ZVTx = UTh,
YIYVTx = YIUTh because ¥IY =1,,,,
(WhHx = vziuTh,
x = VX'UTb =A'b.

Remark: Remember that the SVD is not unique because the
matrices U and V are not unique. Hence, depending on the SVD

we find different least-square solutions of Ax = b.
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