Homework sheet 3: REAL VECTOR SPACES

Year 2011-2012

1. Let W be the set of all vectors in \mathbb{R}^4 of the form $\begin{bmatrix} s+3t\\ s-t\\ 2s-t\\ 4t \end{bmatrix}$, where $s,\,t\in\mathbb{R}$.

Show that W is a subspace of \mathbb{R}^4 .

2. Let W be the set of all vectors of the form shown, where a, b and c represent arbitrary real numbers. In each case, either find a set S of vectors that spans W or give an example to show that W is not a vector space.

a)
$$\begin{bmatrix} -a+1 \\ a-6b \\ 2b+a \end{bmatrix}$$
 b)
$$\begin{bmatrix} 4a+3b \\ 0 \\ a+b+c \\ c-2a \end{bmatrix}$$

- 3. Let W be the union of the first and third quadrants in the xy-plane. That is, let $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : xy \geq 0 \right\}$. If $u \in W$ and α is any scalar, is αu in W? Why? Find specific vectors u, v in W such that u + v is not in W. This is enough to show that W is not a vector space.
- 4. Show that the given set W is a vector space or find a specific example to the contrary.

a)
$$\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : \begin{array}{c} a+3b=c \\ b+c+a=d \end{array} \right\}$$
 b)
$$\left\{ \begin{bmatrix} b-5d \\ 2b \\ 2d+1 \\ d \end{bmatrix} : b,d \text{ reales} \right\}$$

- 5. Let \mathbb{P}_n be the set of all polynomials of degree less or equal to n. Determine if the following subsets of \mathbb{P}_n are subspaces or not.
 - a) The set of all polynomials of the form $p(t)=at^2$, where $a\in\mathbb{R}$.
 - b) The set of all polynomials of the form $p(t) = a + t^2$, where $a \in \mathbb{R}$.
- 6. Determine if the set H of all matrices of the form $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ is a subspace of $M_{2\times 2}$, where $a,b,d\in\mathbb{R}$.

7. Let
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 4 \\ 2 \\ 6 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$.

- a) Is w in $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$? How many vectors are in $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?
- b) How many vectors are in Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?
- c) Is **w** in the subspace spanned by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$? Why?
- d) Is $\mathbf{u} = \begin{pmatrix} 1 \\ 3 \\ 14 \end{pmatrix}$ in the subspace spanned by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?
- 8. Determine if $w = \begin{pmatrix} 5 \\ -3 \\ 2 \end{pmatrix}$ is in Nul A, where $A = \begin{pmatrix} 5 & 21 & 19 \\ 13 & 23 & 2 \\ 8 & 14 & 1 \end{pmatrix}$.
- 9. Find an explicit expression, in terms of the generating vectors, of the null space of the following matrices:

(a)
$$\begin{pmatrix} 1 & -6 & 4 & 0 \\ 0 & 0 & 2 & 0 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 5 & -4 & -3 & 1 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

10. Find NulA for the matrix
$$A = \begin{pmatrix} 1 & 0 & -5 & 1 & 4 \\ -2 & 1 & 6 & -2 & -2 \\ 0 & 2 & -8 & 1 & 9 \end{pmatrix}$$
.

11. Assume that $A \sim B$, use this information to find Nul A and Col A.

$$A = \begin{pmatrix} 1 & 2 & -5 & 11 & -3 \\ 2 & 4 & -5 & 15 & 2 \\ 1 & 2 & 0 & 4 & 5 \\ 3 & 6 & -5 & 19 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 0 & 4 & 5 \\ 0 & 0 & 5 & -7 & 8 \\ 0 & 0 & 0 & 0 & -9 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

12. Find the matrix
$$A$$
 such that $\operatorname{Col} A = \left\{ \begin{pmatrix} b-c \\ 2b+c+d \\ 5c-4d \\ d \end{pmatrix} \mid b,c,d \in \mathbb{R} \right\}$.

13. Let
$$A = \begin{pmatrix} -6 & 12 \\ -3 & 6 \end{pmatrix}$$
 and $\mathbf{w} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. Determine if \mathbf{w} is in Col A and also in Nul A .

14. Determine if the following transformations are linear or not:

a)
$$T(x_1, x_2) = (4x_1 - 2x_2, 3|x_2|).$$

- b) $T(x_1, x_2) = (x_2, 0, x_1 + x_2, 0).$
- c) $T(x_1, x_2) = (x_2, 1, x_1 + x_2, 0).$
- d) $T(x_1, x_2, x_3) = (x_3, x_2)$.
- e) $T(x_1, x_2) = x_1 x_2$.
- $f) T(x_1, x_2, x_3) = x_1 + x_2 + x_3.$
- 15. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by T(x) = Ax where $A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$. Find the images under T of $u = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$ and $v = \begin{pmatrix} a \\ b \end{pmatrix}$.
- 16. Let A be a 6×5 matrix. What must be a and b in order to define $T: \mathbb{R}^a \to \mathbb{R}^b$ by T(x) = Ax?
- 17. How many rows and columns must a matrix A have in order to define a mapping T from \mathbb{R}^5 into \mathbb{R}^7 by the rule T(x) = Ax?
- 18. Let T be a linear transformation given by T(x) = Ax. Find x whose image under T is b, where

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 3 & 1 \\ 0 & 3 & -8 \end{bmatrix} \text{ and } b = \begin{bmatrix} 5 \\ 9 \\ 4 \end{bmatrix}.$$

19. Let

$$A = \begin{bmatrix} 1 & 2 & -7 & 5 \\ 0 & 1 & -4 & 0 \\ 1 & 0 & 1 & 6 \\ 2 & -1 & 6 & 8 \end{bmatrix} \text{ and } b = \begin{bmatrix} 9 \\ 5 \\ 0 \\ -9 \end{bmatrix}.$$

- a) Find all the vectors $x \in \mathbb{R}^4$ such that are mapped to zero under the transformation $x \to Ax$
- b) Is b in the range of the linear transformation defined by A?
- 20. Use a rectangular coordinate system to plot

$$u = \begin{bmatrix} 4\\2 \end{bmatrix}$$
 and $v = \begin{bmatrix} -5\\-2 \end{bmatrix}$

and their images under the given transformation T defined by the rule T(x) = Ax. Describe geometrically what T does to each vector $x \in \mathbb{R}^2$.

$$A = \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \quad A = \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right] \quad A = \left[\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array} \right].$$

3

21. Let
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 be a linear transformation that maps $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ into $\begin{pmatrix} 7 \\ -3 \\ 1 \end{pmatrix}$ and $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ into $\begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}$. Use the fact that T is linear to find the images under T of $3u, -2v$ and $3u - 2v$.

- 22. Consider the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$.
 - a) Find the matrix associated with that transformation and provide the analytical expression of T.
 - b) Compute $T \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.
 - c) Compute $T^{-1} \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.
 - d) Is T injective? Is it onto?
- 23. Determine whether the following set of vectors are bases for \mathbb{R}^3 . Of the sets that are not bases, determine which ones are linearly independent and which ones span \mathbb{R}^3 . Justify your answers.

$$a$$
) $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\0\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$.

b)
$$\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}$, $\begin{pmatrix} -8 \\ 5 \\ 4 \end{pmatrix}$.

c)
$$\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$.

- 24. Find a basis for the null spaces of the following matrix $\begin{pmatrix} 1 & 1 & -2 & 1 & 5 \\ 0 & 1 & 0 & -1 & -2 \\ 0 & 0 & -8 & 0 & 16 \end{pmatrix}$.
- 25. Find a basis for $\mathrm{Span}\{v_1,\ldots,v_5\}$ if

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -2 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 6 \\ -1 \\ 2 \\ -1 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 5 \\ -3 \\ 3 \\ -4 \end{pmatrix}, \quad v_5 = \begin{pmatrix} 0 \\ 3 \\ -1 \\ 1 \end{pmatrix}.$$

26. Decide if the following vectors are linearly independent:

$$\left[\begin{array}{c}1\\3\\-2\end{array}\right], \left[\begin{array}{c}-3\\-5\\6\end{array}\right], \left[\begin{array}{c}0\\5\\-6\end{array}\right].$$

27. Decide if the columns in the following matrix are linearly independent:

$$A = \left[\begin{array}{rrrr} 1 & -1 & -3 & 0 \\ 0 & 1 & 5 & 4 \\ -1 & 2 & 8 & 5 \\ 3 & -1 & 1 & 3 \end{array} \right].$$

28. Let

$$v_1 = \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 3 \\ 9 \\ -1 \end{bmatrix} \text{ and } v_3 = \begin{bmatrix} -2 \\ -6 \\ h \end{bmatrix}.$$

For what values of h

- a) $v_3 \in \text{Span}[v_1, v_2]$?
- b) v_1, v_2 and v_3 are linearly independent?

29. Find a basis for the set of vectors in \mathbb{R}^2 in the line y = 5x.

30. Let
$$\mathbf{v}_1 = \begin{pmatrix} 3\\4\\-2\\-5 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 4\\3\\2\\4 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 2\\5\\-6\\-14 \end{pmatrix}$. It can be verified that $2\mathbf{v}_1 - \mathbf{v}_2 - \mathbf{v}_3 = \begin{pmatrix} 2\\5\\-6\\-14 \end{pmatrix}$.

0. Use this information to find a basis for $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. (Remark: The solution is not unique).

31. Fill in the blank space in the following sentence: "If A is an $m \times n$ matrix, then the columns of A are linearly independent if and only if A has _____ pivot columns".

5

32. Find a basis and the dimension of the following subspaces:

a)
$$\left\{ \begin{pmatrix} 3a + 6b - c \\ 6a - 2b - 2c \\ -9a + 5b + 3c \\ -3a + b + c \end{pmatrix} : a, b, c \in \mathbb{R} \right\}.$$

b)
$$\left\{ \begin{pmatrix} 2a \\ -4b \\ -2a \end{pmatrix} : a, b \in \mathbb{R} \right\}$$
.

$$c) \left\{ \begin{pmatrix} p+2q \\ -p \\ 3p-q \\ p+q \end{pmatrix} : p,q \in \mathbb{R} \right\}.$$

$$d) \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} : a-3b+c=0, \ b-2c=0, \ 2b-c=0 \right\}.$$

$$e) \left\{ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} : a-3b+c=0 \right\}.$$

33. Find the dimension of the subspace spanned by the vectors:

$$\begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ -6 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \\ 5 \end{pmatrix}, \begin{pmatrix} -3 \\ 5 \\ 5 \end{pmatrix}.$$

34. Determine the dimension of the subspaces Nul A and Col A in the following cases:

a)
$$A = \begin{pmatrix} 1 & 2 & -4 & 3 & -2 & 6 & 6 \\ 0 & 0 & 0 & 1 & 0 & -3 & 7 \\ 0 & 0 & 0 & 0 & 1 & 4 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
.

$$b) \ A = \begin{pmatrix} 3 & 2 \\ -6 & 5 \end{pmatrix}.$$

$$c) \ \ A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

35. Assume that the matrices A and B are row equivalent. Without additional computations determine the rank of A, the dimension of ker A. Find a basis of $\operatorname{Col} A$ and $\ker A$.

a)
$$A = \begin{pmatrix} 1 & 3 & 4 & -1 & 2 \\ 2 & 6 & 6 & 0 & -3 \\ 3 & 9 & 3 & 6 & -3 \\ 3 & 9 & 0 & 9 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 3 & 4 & -1 & 2 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$.

$$b) \ A = \begin{pmatrix} 1 & 1 & -2 & 0 & 1 & -2 \\ 1 & 2 & -3 & 0 & -2 & -3 \\ 1 & -1 & 0 & 0 & 1 & 6 \\ 1 & -2 & 2 & 1 & -3 & 6 \\ 1 & -2 & 1 & 0 & 2 & -1 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 1 & -2 & 0 & 1 & -2 \\ 0 & 1 & -1 & 0 & -3 & -1 \\ 0 & 0 & 1 & 1 & -13 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

36. If a 7×5 matrix A has rank 2, find the dimension of Nul A and the rank of A^T .

- 37. Assume that a 6×8 matrix A has 4 pivots. What is the dimension of Nul A? Is $\operatorname{Col} A = \mathbb{R}^4$? Justify your answers.
- 38. If the null space of a 8×7 matrix A has dimension 5, what is the dimension of the column space of A?
- 39. Let A be a 7×5 matrix. What is the largest possible rank of A? And if A is a 5×7 matrix? Justify your answers.
- 40. Let A be a 7×5 matrix. What is the smallest possible dimension of the null space of A?
- 41. Assume that a nonhomogeneous system Ax = b with 6 equations and 8 unknowns has 2 free variables. Is it possible to change some of the values in the column vector b so that the system is inconsistent?
- 42. Let A be a $m \times n$ matrix and $b \in \mathbb{R}^m$. What are the relative rank values of the matrices A and $\begin{pmatrix} A & b \end{pmatrix}$ so that the system Ax = b is consistent? (Rouché-Frobenius' Theorem).
- 43. Let $\mathcal{B} = \{b_1, b_2\}$ and $\mathcal{C} = \{c_1, c_2\}$ be bases for a vector space V and suppose $b_1 = -2c_1 + 4c_2$, $b_2 = 3c_1 6c_2$. Find the change-of-basis matrix from \mathcal{B} to \mathcal{C} . Find $[x]_{\mathcal{C}}$ for $x = 2b_1 + 3b_2$.
- 44. Let $\mathcal{A} = \{a_1, a_2, a_3\}$ and $\mathcal{D} = \{d_1, d_2, d_3\}$ be bases for a vector space V and suppose $P = [[d_1]_{\mathcal{A}} [d_2]_{\mathcal{A}} [d_3]_{\mathcal{A}}]$. Which of the following equations is satisfied by P for all $x \in V$?

(a)
$$[x]_A = P[x]_D$$
 (b) $[x]_D = P[x]_A$

- 45. Let $\mathcal{D} = \{d_1, d_2, d_3\}$ and $\mathcal{F} = \{f_1, f_2, f_3\}$ be bases for a vector space V and suppose $f_1 = 2d_1 d_2 + d_3$, $f_2 = 3d_2 + d_3$, $f_3 = -3d_1 + 2d_3$. Find the change-of-basis matrix from \mathcal{F} to \mathcal{D} . Find $[x]_{\mathcal{D}}$ for $x = f_1 2f_2 + 2f_3$.
- 46. Let $\mathcal{B} = \{b_1, b_2\}$ and $\mathcal{C} = \{c_1, c_2\}$ be bases for \mathbb{R}^2 . Find the change-of-basis matrix from \mathcal{B} to \mathcal{C} and from \mathcal{C} to \mathcal{B} if

a)
$$b_1 = \begin{pmatrix} -1 \\ 8 \end{pmatrix}$$
, $b_2 = \begin{pmatrix} 1 \\ -7 \end{pmatrix}$, $c_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $c_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

b)
$$b_1 = \begin{pmatrix} 6 \\ -12 \end{pmatrix}$$
, $b_2 = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$, $c_1 = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$, $c_2 = \begin{pmatrix} 3 \\ 9 \end{pmatrix}$.

47. Find the coordinate vectors $[x]_{\mathcal{B}}$ of x in the basis $\mathcal{B} = \{b_1, \ldots, b_n\}$ in the following cases:

a)
$$b_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
, $b_2 = \begin{pmatrix} 5 \\ -6 \end{pmatrix}$, $x = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$.

b)
$$b_1 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$
, $b_2 = \begin{pmatrix} 2 \\ 1 \\ 8 \end{pmatrix}$, $b_3 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, $x = \begin{pmatrix} 3 \\ -5 \\ 4 \end{pmatrix}$.

48. Find the change-of-basis matrix, $P_{\mathcal{B}_c,\mathcal{B}}$ from bases \mathcal{B} to the standard bases \mathcal{B}_c of \mathbb{R}^2 and \mathbb{R}^3 respectively:

(a)
$$\mathcal{B} = \left\{ \begin{pmatrix} 2 \\ -9 \end{pmatrix}, \begin{pmatrix} 1 \\ 8 \end{pmatrix} \right\},$$
 (b) $\mathcal{B} = \left\{ \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ -5 \end{pmatrix}, \begin{pmatrix} 8 \\ -2 \\ 7 \end{pmatrix} \right\}.$

49. The vectors $v_1 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2 \\ -8 \end{pmatrix}$, $v_3 = \begin{pmatrix} -3 \\ 7 \end{pmatrix}$ span \mathbb{R}^2 , but do not form a basis. Find two different ways to express vector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ as a linear combination of v_1 , v_2 and v_3 .

Additional exercises: D. C. Lay "Linear algebra and its applications", 2012.

- Sections 4.1-4.2
- Sections 1.8-1.9.
- Sections 4.3-4.7.