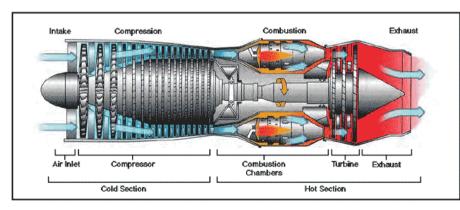
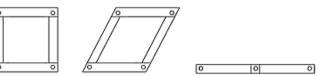
MACHINE THEORY Bachelor in Mechanical Engineering

INTRODUCTION TO KINEMATICS AND MECHANISMS

Ignacio Valiente Blanco José Luis Pérez Díaz David Mauricio Alba Lucero Efrén Díez Jiménez

Universidad Carlos III de Madrid





Machine Definition

DEFINITIONS

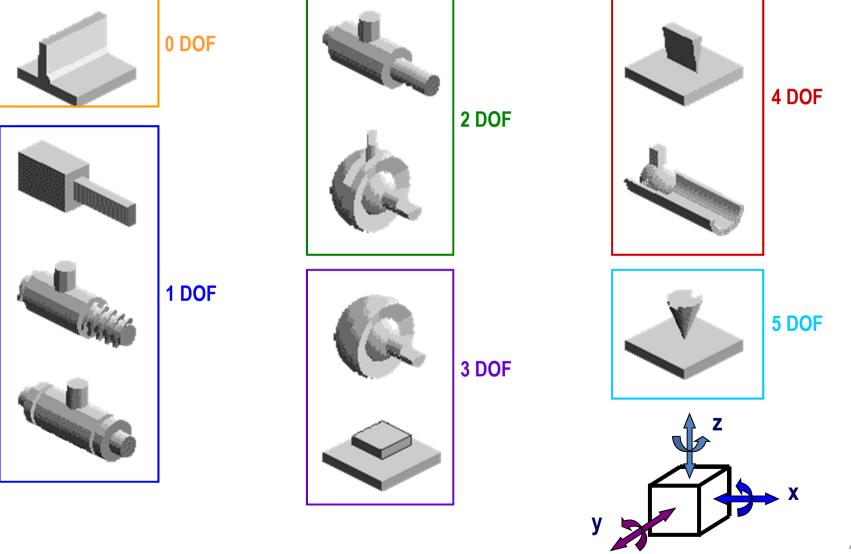
- **Kinematic chain**: It is a linkage of elements and joints that transmit a controlled output motion related to a given input motion.
- **Mechanism**: It is a kinematic chain where one element (or more) are fixed to the reference framework (which can be in motion)
- Machine: Group of resistant elements (which usually contain mechanisms) thought to transmit considerable movement, forces or/and power. Boundary is not completely clear!!

Source: Wikipedia

Kinematic Pairs

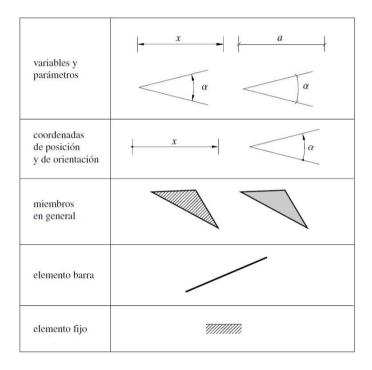
• <u>Kinematic pair</u> – Existing connection between two elements of a mechanism that have a relative motion between them.

Kinematic pairs was classified by Reuleaux as follow:


- Lower pair two links having a surface contact between them.
- Higher pair two links having line or point contact between them.
- Joint guarantees the contact between two members and constrains their relative motion

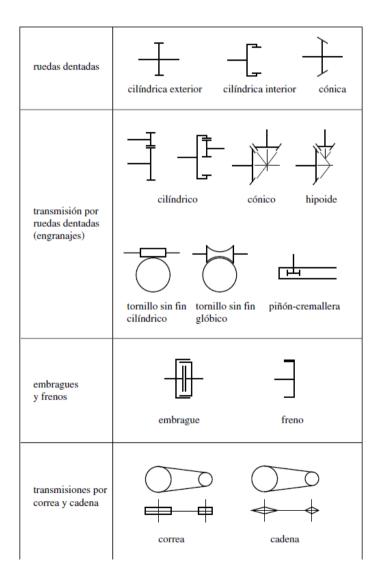
Universidad

Carlos III de Madrid


Classification of Kinematic Pairs by Degrees of Freedom

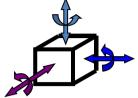
REPRESENTATION

Standard representation UNE-EN ISO 3952:1996.



par de revolución o articulación	movimento plano movimento en el espacio		
par prismático o guía-corredera			
par helicoidal			
par cilíndrico			
par plano	$\frac{1}{7}$		
par esférico o rótula esfér <mark>i</mark> ca	-0_		
junta universal			
corredera con articulación			
par guía-botón	\rightarrow		
unión rígida entre miembros	< <		
articulaciones enmedio de barras			

REPRESENTATION


leva plana de rotación	+) con artículación fija	
leva plana de traslación			
palpadores	de traslación plano	de rotación	
	de rodillo –	©—∝ √~⊄	
	сштуо —	5-d	
ruedas de fricción	plana cilíndrica cónica inte	erior cónica exterior	
transmisión por ruedas de fricción		-	

D.O.F

Degrees of freedom:

- 1. Number of independent coordinates needed to define the position of the element/mechanism...
- 2. or number of parameters needed to determine unambigously the geometry configuration of a system in space....
- 3. or the number of inputs needed to obtain a predictible output of a mechanism.

GRÜBLER'S EQUATION

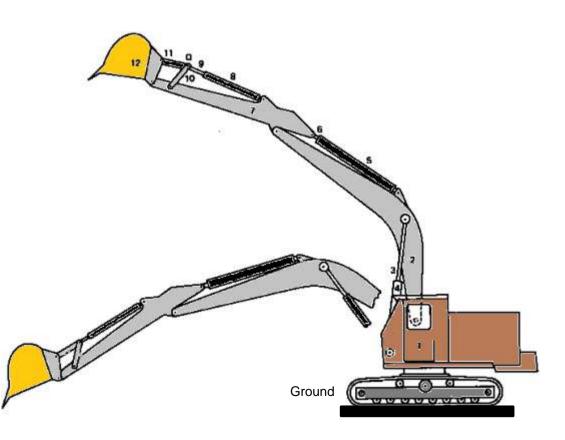
$$\mathbf{G} = 3 \cdot (\mathbf{N} - 1) - 2 \cdot \mathbf{f}_1 - \mathbf{f}_2$$

Kutzbach Criterion for mobility of a planar mechanism

$$f_1 = n^0$$
 pairs 1 DOF

- $f_2 = n^0$ pairs 2 DOF
- $N = n^{\circ}$ of elements

Universidad

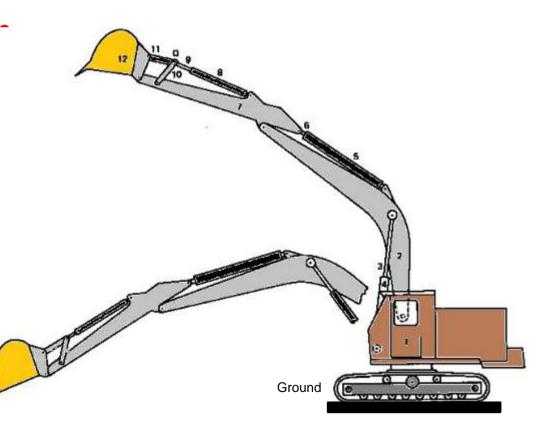

Carlos III de Madrid

CHEVYCHEF-GRÜBLER-KUTZBACH CRITERION

Example. Obtain the number of DOF of the digger arm.

- G=0 Structure. No motion
- ⊙ G>0 Mechanism. Motion
- G < 0 Hyperestatic
 Structure. No motion

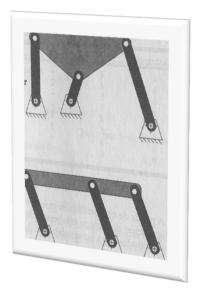
Universidad

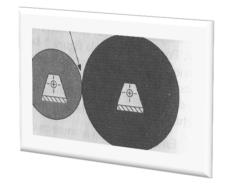

Carlos III de Madrid

CHEVYCHEF-GRÜBLER-KUTZBACH CRITERION

Example. Obtain the number of DOF of the digger arm.

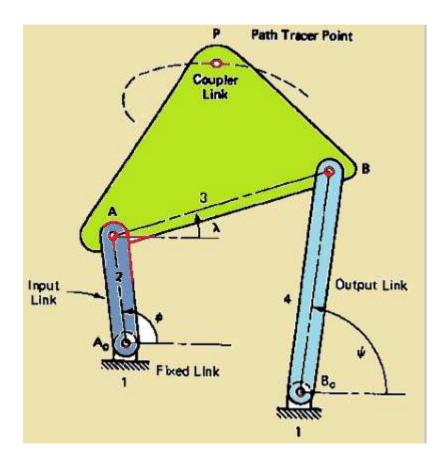
- G=0 Structure. No motic -
- G>0 Mechanism. Motior
- G < 0 Hyperestatic
 Structure. No motion


G=3*(12-1)-2*12(pin joints)-2*3(slide joints)=3

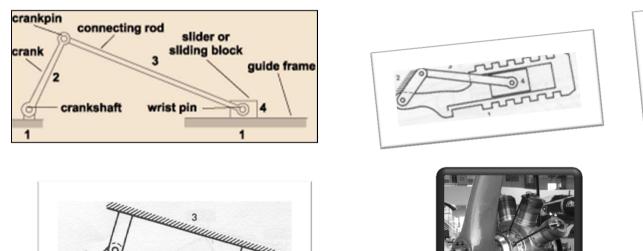


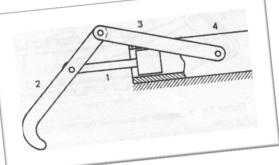
D.O.F

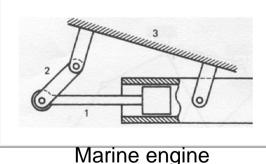
 Be careful!!!! Grübler ecuation not always works. As far as this equation does not consider shape or size of links, there are some exceptions:



FOUR-BAR LINCKAGE


- Very simple but very versatile.
 First option for design.
- Clasification depending on the task:
 - ► Function Generator. Output rules
 - ► Path Generator. Path rules
 - ► Motion Generator. All important

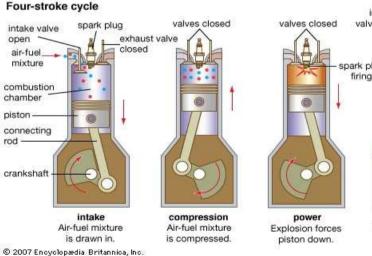


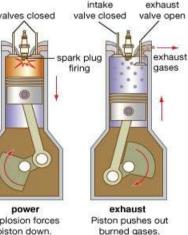


4 BAR KINEMATIC INVERSIONS

 It is the method of obtaining different mechanisms by fixing different links of the same kinematic chain. POWERFUL TOOL. See that with the slider-crank example:

Whitworth mechanism. Gnome engine


Hand pump



mechanism.

GEOMETRIC INVERSION

 In some mechanisms, for a given driver position, there are more than one possible configurations. • DEAD CENTER **POSITION ALWAYS APPEARS** in a four bar

GRASHOF CRITERIA

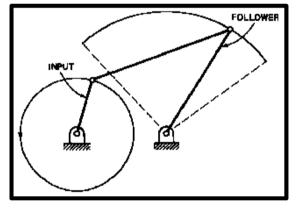
• Simple relation that describes the behavior of the kinematic inversions of a four-bar mechanism.

p

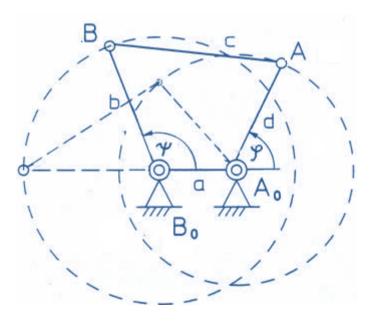
S= lenght of the shortest linkL= lenght of the longest link.P and Q are the other links.

If my condition is satisfied, at least one link would be able to do a full revolution with respect to another link.

S+L ≤ P+Q

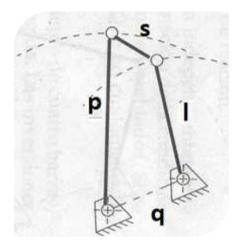

CONTINOUS MOTION IS ALLOWED

GRASHOF CRITERIA


• If s + I < p + q: Four possibilities of Grashof mechanism:

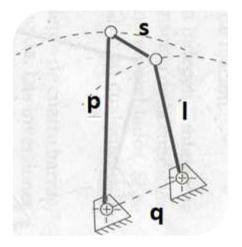
Crank-rocker: Shortest link is the crank. Frame is adjacent

Rocker-Crank: The shortest link is the follower.


Double Crank or drag-link: Shortest link is the frame.

GRASHOF CRITERIA

Double rocker: The link opposite the shortest is the frame.



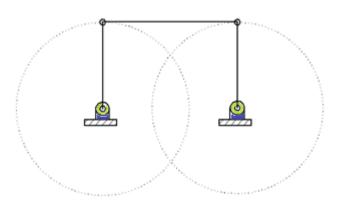
Where is the full rotation of a link?

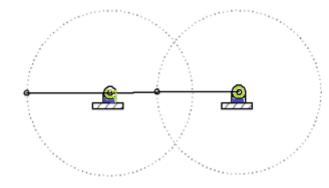
GRASHOF CRITERIA

Double rocker: link opposite the shortest is the frame

Where is the full rotation of a link? ----> The Coupler;

No Grashof mechanisms

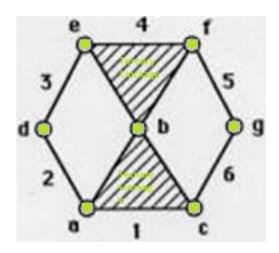

If s + I > p + q: All the kinematic inversions will be double rocker. No continous relative motion is posible.

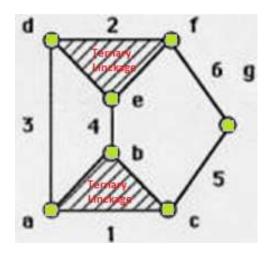


Special Grashof mechanisms.

• If s + I = p + q. Grashof Special Mechanisms.

- All inversions are double-crank or crank-rocker.
- These mechanisms suffer from the change-point condition.
 - ► All links become collinear creating momentarily a second DOF. OUTPUT RESPONSE IS UNDETERMINED.

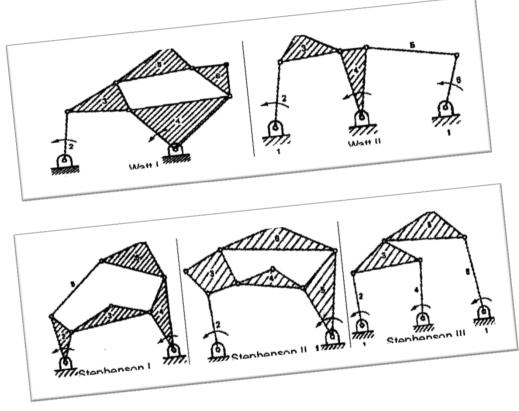




SIX-BAR CHAINS

• Use it when a four-bar lickage does not provide the performance requiered.

Watt Kinematic Chain


Stephenson Kinematic Chain

Universidad

6 BAR KINEMATIC INVERSIONS Carlos III de Madrid

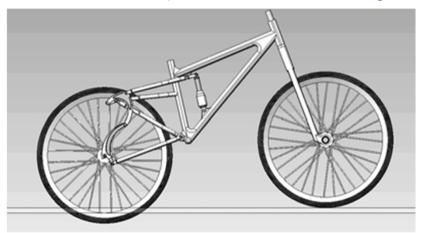
• Six bar kinematic chains also present kinematic inversions.

Inversions of Watt and Stephenson kinematic chains

REAL MECHANISMS

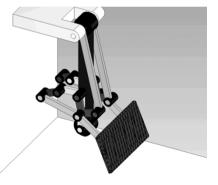
• See some real examples

http://www.youtube.com/watch?v=ZiAbpscuJdo



REAL MECHANISMS

FOUR BAR MECHANISM



SIX BAR MECHANISM: to maintain a constant distance between the axle and bottom bracket. It is a Stephenson III six-bar linkage

UCI XGR gravity racer

Brake pedal

INTERMITENT MOTION

Sometimes intermitent motion is needed. Examples: Geneva mechanism, camshaft, ratchet mechanism.

http://www.youtube.com/watch?v=85BsbncfRqA

http://www.youtube.com/watch?v=eijyLC4ZzQk&feature=related

- Erdman, A.G., Sandor, G.N. and Sridar Kota Mechanism Design. Prentice Hall, 2001. Fourth Edition.
- Robert L. Norton. Diseño de Maquinaria. Ed.Mc Graw Hill 1995.
- Shigley, J.E. & Uicker, J.J. Teoría de máquinas y mecanismos. McGraw-Hill, 1998.
- Máquina y Mecanismo. Ed.UPC, 2001
- Mechanism and Machine Theory. Ed. Elsevier.
- http://synthetica.eng.uci.edu:16080/~mccarthy/animations.html
- http://www.wellnessoptions.ca/html/1/015/1_i15_2_main.html
- MOVIES

http://www.youtube.com/watch?v=ZiAbpscuJdo

http://synthetica.eng.uci.edu:16080/~mccarthy/animations.html

http://synthetica.eng.uci.edu:16080/~mccarthy/Animations/Convertible-2.gif

http://www.youtube.com/watch?v=85BsbncfRqA

http://www.youtube.com/watch?v=eijyLC4ZzQk&feature=related