MACHINE THEORY Bachelor in Mechanical Engineering

INTRODUCTION TO GEAR DESIGN

David Mauricio Alba Lucero José Luis Pérez Díaz Ignacio Valiente Blanco Efrén Díez Jiménez

Universidad Carlos III de Madrid

Objectives

- Understand why teeth profiles are needed.
- Understand the involute curve, its properties and how it is created.
- Learn the basic terminology of gears.
- Understand the equivalent kinematic diagram of gears.
- Identify different types of gears.

Why do we need gears?

Rolling circles, what if friction is not enough?

Possible solutions

But, what's wrong with these designs?

They cannot transmit constant speed

Conjugated action

• When two profiles are designed to produce a constant relation of angular velocity.

How to find the profile?

- Unfortunately it is not a trivial task.
- But, fortunately only two profiles are widely used:
 - The involute
 - And the cycloid

The cycloid

Check the second video of the references.

The involute

Kinematic equivalence

What is the pressure angle?

It is an standard value: 20°, 25° and in the past 14.5°

The pressure angle

Gear tooth nonmeclature

- Pitch circles
- Circular pitch
- Addendum
- Clearance
- Working depth
- Whole depth
- Tooth
- Thickness
- Backlash!!

Backlash

Basic relationships

Diametral Pitch

N= Number of teeth D= Pitch circle diameter

 $P = \frac{N}{D}$

Circula Pitch

 $CP = \frac{\pi D}{N}$

Basic relationships

Base pitch:

$$BP = CP \frac{D_b}{D}$$

D = Pitch circle diameter

 D_b = Base circle diameter

Line of action:

$$l = \left| \overline{AC} - \overline{AP} \right| + \left| \overline{DB} - \overline{DP} \right|$$

$$l = \left| \sqrt{(r_2 + a_2)^2 - (r_2 \cos \delta)^2} \right| - r_2 \sin \delta + \left| \sqrt{(r_3 + a_3)^2 - (r_3 \cos \delta)^2} \right|$$

Contact ratio: $CR = \frac{l}{BP}$

15

Interference

Spur gears

• The smallest gear it is usually called pinion

What if the diameter of the base circle approaches to infinite?

We get a rack and pinion pair. It does convert rotational motion into linear motion.

Helical gears

• They provide a smoother movement than spur gears.

 $x = r\cos(t), y = r\sin(t), z = pt$

r is the diameter of the helix and p is the pitch

Helical gears

 Their disadvantage (besides that they are more complex and therefore more expensive) is that they produce forces along the axis. Although there is a solution: Herringbone gears.

Herringbone gear

Helical gears

• They can also transmit movement between axis that do not intersect. And there also is the rack and pinion version.

Worm gears

 They are a special case of helical gears, with the pion helix close o 90°, and the gear close to 0°

Spiral gears

 An improvement of the bevel gears, they use the spiral curve to generate the tooth.

 $r = a + b\theta$

Spiral Gears

• An special case are the hypoid gears, they allow higher degrees relations of transmission and smoother motion.

Force analysis of spur gears

Force analysis of bevel gears

Assumption: All the forces are concentrated on the middle of the teeth

$$W_{t} = \frac{T}{r_{med}}$$
$$W_{r} = W_{t} \tan \phi \cos \gamma$$
$$W_{a} = W_{t} \tan \phi \sin \gamma$$

Forces of helical gears

 $W_{t} = W \sin \phi_{n}$ $W_{r} = W \cos \phi_{n} \cos \psi$ $W_{a} = W \cos \phi_{n} \sin \psi$

Usually W_t is given, therefore:

$$W = \frac{W_t}{\cos \phi_n \cos \psi}$$
$$W_r = W_t \tan \phi_t$$
$$W_a = W_t \tan \psi$$

Gear manufacturing

Universal milling

Gear manufacturing

Gear shaping

Gear manufacturing

• Hobbing, it cannot produce internall gears

Some videos

- <u>http://www.youtube.com/watch?v=L1x1TRO36gU&fe</u>
 <u>ature=related</u>
- http://www.youtube.com/watch?v=xF9CjluRFJ4c
- <u>http://www.youtube.com/watch?v=o6bPTTyHSBU&fe</u> <u>ature=related</u>

References

- Shigley, J. E.; Mischke C. R. Diseño en la ingeniería mecánica. McGraw-Hill; 5ed. 1990.
- Erdman, A.G., Sandor, G.N. and Sridar Kota Mechanism Design. Prentice Hall, 2001. Fourth Edition.
- Robert L. Norton. Diseño de Maquinaria. Ed.Mc Graw Hill 1995.
- http://www.youtube.com/watch?v=Dh83mGUCiws
- http://www.youtube.com/watch?v=APeJrQpm5B8
- <u>http://www.youtube.com/watch?v=Z1f29M4o3jl&feature=relat</u>
 <u>ed</u>