

MACHINE THEORY ROLLING BEARINGS

Efrén Díez Jiménez
Ignacio Valiente Blanco
Mauricio Alba Lucero
José Luis Pérez Díaz

ROLLING BEARINGS

ROLLING BEARINGS

DEFINITION OF ROLLING BEARINGS

"A rolling bearing is a mechanical element placed between two parts of a machine, with an commun rotation axis in where one part can rotate in respect to the other one."

CHARACTERISTICS OF ROLLING BEARINGS

Very similar to sliding bearings in:

- Low friction.
- Very accurate Tolerances.
- Precise assembly needed.
- Sensible ot impacts, overloads, dust...
- Maintenance.

CHARACTERISTICS OF **ROLLING BEARINGS**

Advantages in front of the sliding bearings:

- Lower frictional coefficient independently of the rotational speed.
- Admite carga axial.
- Algunos tipos son autoalineables.

Some disadvantages:

- Higher pirce.
- More complex assembly.

ROLLING ELEMENTS

Posring type	Finished part	Part					
Bearing type		Outer ring	Inner ring	Rolling elements	Cage		
Deep groove ball bearing				00 00 00 00			
Cylindrical roller bearing				49805g			
Tapered roller bearing				(Court			
Self-aligning roller bearing							
Needle roller bearing							

MATERIALS OF ROLLING BEARINGS

- The rolling elements (ball or cylinder) and support elements (ring or disc) are manufactured in hard steel, high resistance to wear, and a hardness of 500-700° Brinell. Two kinds of steel:
 - Chromed steel (1 % of Carbon 1,5 % of Chrome).
 - Manganesium-Chrome steel o Nickel steel (0,15 % of Carbon).

CAGES

Polyamide mechanized cage

Molded polyamide cage

Mechanized bronze cage

Metal sheet pressed riveted cage

Massive brass riveted cage

Massive brass riveted cage

Mechanized brass riveted cage

AUXILIARY ELEMENTS

SEALING AND PROTECTIONS.

One protection

Two protections

One sealing

Two sealings

Sealing & protections

Ring & spring

Ring, spring & 2 protections

Ring, spring & sealing

Ring, spring & 2 sealings

Ring, spring, protection & sealing

CLASSIFICATION (I)

- Axials.
- Mixed.

According to support element.

- Rings.
- Discs.

According to the tilting of the shaft

- Rigids.
- Pivotants (slight oscilation allowed).

CLASSIFICATION(II)

According to the rolling element.

- Balls(punctual contact).
- Roller (lineal).
 - · Tapered.
 - Cylindrical.
 - Needle (cylinder L/d > 2,5).
 - Spherical (barrel shaped).
 - Symmetric.
 - Asymmetric.

TYPES OF ROLLING BEARING

TYPES OF ROLLING BEARING

BALL BEARINGS

ROLLER BEARINGS

TYPES AND PERFORMANCES OF ROLLING BEARINGS

Ca	Bearings types	Deep groove ball bearings	Angular contact ball bearings	Cylindrical roller bearings	Needle roller bearings	Tapered roller bearings	Self- aligning roller bearings	Thrust ball bearings
	Characteristics							
	Load carrying capacity							
	Radial load			8				•
	Axial load			5				
P	High speed rotation ¹	***	***	***	***	***	☆☆	☆
	Low noise/vibration •	***	***	\$	☆			☆
	Low friction torque	***	**	☆				
	High rigidity			☆☆	☆☆	☆☆	***	
	Allowable misalignment for inner/outer rings ●	☆					**	*
SORODO	Non-separable or separable			0	0	0		0

BALL OR ROLLER BEARING?

- Roller bearing allow higher radial loads.
- Ball bearings can achieve higher speeds.
- Ball bearing can support higher combinated (axial + radial) loads.

- Roller bearing need better tolerances in the manufacture of the tracks because no mis-alignment is allowed.
- Spherical roller bearing collect the best characteristics of the ball and roller bearings and also they can be selfaligning.
- Angular contact ball bearings allows axial loads in both directions.

- Holds combination of axial and radial load.
- The line that joins the two points of contact with the tracks is tilted in respect to the radial plane.

ANGULAR CONTACT BEARING

- Single row angular contact bearing can only allow one axial load direction. Thus, usually two or more angular contact bearing are mounted or doble row ones.
- Higher speeds and accuracy.

- Standards angular contacts are 15°, 25°, 35° and 40°.
 - For higher accuracy or speed commonly 15° is chosen.
 - Higher degrees are chosen for higher loads.

COMBINATION OF ANGULAR CONTACT BEARINGS

- Angular contact bearing are mounted in couples.
- In the space is limited doble row ones are mounted.
- When the couple is used one is for each direction of the axial loads.
- This assembly increases the total rigidity of the system.

ARRANGEMENT OF ANGULAR

CONTACT BEARINGS

O arrangement

T arrangement

O-T arrangement