Autoevaluation TEST Nº1 (Topics 1-3)

Family name and name_

Important: Write your name before beginning the test. No additional material will be provided. Books, class notes are not allowed. Calculators are allowed. Use margins for drafts or calculus. Mark with a cross the correct answer in the box at your left when you are completely sure. No crossings out and no additional comments are allowed. Correct answers mark as +1. Errors mark -0.1. Blanks mark as 0. The final score can not be less than 0. There is only one correct answer in each question.

1.- Consider a nuclide of mass m_X composed of N neutrons (m_N) and Z protons (m_Z) . Which of the following statements is correct:

$m_X = m_N + m_Z$
$m_X < m_N + m_Z$
$m_X > m_N + m_Z$
m_X - m_N - m_Z is the binding energy per nucleon

2.- Which of the following statements is false:

Only three quantum numbers are needed to define the orbital of an electron (n, l, m_l) .
The energy of an electronic orbital is determined by only two quantum numbers (n, l).
Magnetic quantum number, m _I , defines the shape and orientation of orbitals.
Spin quantum number describes the electron magnetic field when it rotates about its own
axis.

3.- Write in decreasing order the radius of the following atoms and ions: K, K^+ , Mg, Al, Al^{3+} .

$ A > Mg > K > K^+ > A ^{3+}$
$K > Mg > Al > K^+ > Al^{3+}$
$Al^{3+} > K^{+} > Mg > K > Al$
$AI > K > Mg > K^{+} > AI^{3+}$

4.- Which of the following compounds has more polar bonds and which is more polar? CH_4 , CCI_4 , CF_4 , CH_3CI

	 14, 61 4, 61 361
	CCl ₄ : highest bond polarity and CF ₄ : highest polarity.
	CH ₃ Cl: highest bond polarity and CCl ₄ : highest polarity.
	CF₄: highest bond polarity and CH₃Cl: highest polarity.
Ī	CF ₄ : highest bond polarity and CF ₄ : highest polarity.

5.- Which of the following statements is false.

A Gy is the absorption of one joule of ionizing radiation by one kilogram of matter
A Bq is the number of joules per second emitted by a radioactive nuclide
A Ci is about $4\cdot10^{10}$ Bq
An acceptable dose level is in the range of a rad

	$_{2}$ SO $_{2}$ and H $_{2}$ O molecules are both angular but bond angle in the former is 119° and 109° in later. Could you explain why?
	Because sulfur has larger radius than oxygen
	Becaus of the hydrogen bonds in water molecule
	Because sulfur has only one lone pair of electrons while oxygen has two
	Because oxygen has only one lone pair of electrons while sulfur has two
	, y
	Let us call x the axis that contains the two nucleus of a diatomic molecule. Which of the owing is true?
	The bonding MO formed by combination of two p_Y has one nodal plane
	The antibonding MO formed by combination of two s has two nodal planes
	The bonding π_X has one nodal plane
	The overlapping between two p _x has cylindrical symmetry
۵.	Which of the following molecules presents the highest paramagnetism? Li_2 , B_2 , N_2 , Ne_2
9.	
	Li ₂
	B_2
	N_2
	Ne ₂ ⁺

6.- Write the Lewis structure of ozone (O_3) ?