FINAL EXAM
Escuela rolitecnica Superior
Universidad Carlos III de Madrid

| | | | | | | EXAM (60\%) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SURNAME.
NAME
1.- (1.2 points) Human body approximately contains 250 g of potassium from which 0.012% is ${ }^{40} \mathrm{~K}$, a beta emitter with $\mathrm{t}_{1 / 2}=1.25 \cdot 10^{9} \mathrm{y}(1.311 \mathrm{MeV})$. Answer succinctly the following questions:
a) (0.2 points) How changes Z and N in a beta emission process?
b) (0.2 points) Is it typical for nuclides with $N / Z \gg 1$ or $N / Z \ll 1$?
c) (0.2 points) What is activity? How is it related with the mean lifetime?
d) (0.6 points) Calculate the activity of ${ }^{40} \mathrm{~K}$ and the absorbed dose (in Gy) for a human (80 kg) along all his life (80 y).
Data: $1 \mathrm{MeV}=10^{6} \mathrm{eV} ; 1 \mathrm{eV}=1.6 \cdot 10^{-19} \mathrm{~J} ; 1 \mathrm{y}=365.25 \mathrm{~d} ; \mathrm{N}_{\mathrm{A}}=6.022 \cdot 10^{23} ; \mathrm{M}_{\mathrm{K}}=39.1 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
2.- (1 point) Consider the following molecules $\mathrm{HBr}, \mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{XeF}_{4}$:
a) (0.2 point) Write their Lewis structures.
b) (0.2 point) Indicate how many lone pairs has the central atom and describe the molecular geometry.
c) (0.2 point) Justify which of them have non zero dipolar moment.
d) (0.2 point) Justify which of them are water soluble.
e) (0.2 point) Which is the bond order for HBr ? Justify the answer.
3.- (1 point) Concerning thermochemistry answer the following questions:
a) (0.25 point) What is internal energy?
b) (0.25 point) What is enthalpy?
c) (0.25 point) What are reversible and irreversible processes? Explain using a gas expansion process.
d) (0.25 point) We need to compress a gas inside a piston. How we do it with as little work as possible?
4.- (1.4 points) A $258.3 \mathrm{~cm}^{3}$ chamber equipped with a piston contains CH_{4} at 10 atm. and $77^{\circ} \mathrm{C}$. 6.4 g of O_{2} are injected in the chamber, being this amount more than needed for a complete combustion of methane. After combustion the system returns to the initial temperature and it is found 5 L of a gas mixture at an unknown pressure over a certain amount of liquid water.
a) (0.2 points) Balance the combustion equation.
b) (0.8 point) Find the amount of water in the gas mixture and the volume of liquid water.
c) (0.4 points)Calculate the volume percentage composition of the gas mixture after combustion.
Data: $\rho\left(\mathrm{H}_{2} \mathrm{O}_{\mathrm{L}}, 77^{\circ} \mathrm{C}\right)=0.978 \mathrm{~g} \cdot \mathrm{~cm}^{-3} ; \mathrm{P}\left(\mathrm{H}_{2} \mathrm{O}_{\mathrm{g}}, 77^{\circ} \mathrm{C}\right)=314.1 \mathrm{mmHg} ; \mathrm{R}=0.082 \mathrm{~atm} \cdot \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$; $M\left(\mathrm{O}_{2}\right)=32 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=18 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$.
5.- (1.4 points) Water is added to 16.4 g of sodium acetate to prepare 500 mL of solution. Calculate:
a) (0.4 points) pH of the solution.
b) (0.6 points) The weight of acetic acid that must be added to obtain a pH of 5 ?
c) (0.4 point) The weight of solid silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ we must add to the initial sodium acetate solution to begin precipitation of silver acetate $\left(\mathrm{AgCH}_{3} \mathrm{COO}\right)$.
Data: M (acetic acid) $=60 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; ~ M$ (sodium acetate) $=82 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{K}_{\mathrm{a}}($ acetic acid $)=1.8 \cdot 10^{-5}$; $M\left(\mathrm{AgNO}_{3}\right)=170 \mathrm{~g} \cdot \mathrm{~mol}^{-1} ; \mathrm{K}_{\mathrm{s}}\left(\mathrm{AgCH}_{3} \mathrm{COO}\right)=1.94 \times 10^{-3}$.
6.- (1.4 points) Consider a cell in which the following reaction takes place:

$$
5 \mathrm{Fe}^{2+}(\mathrm{ac})+\mathrm{MnO}_{4}^{-}(\mathrm{ac})+8 \mathrm{H}^{+}(\mathrm{ac}) \leftrightarrow 5 \mathrm{Fe}^{3+}(\mathrm{ac})+\mathrm{Mn}^{2+}(\mathrm{ac})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Platinum electrodes are introduced in both anode and cathode, a saline bridge connects the two electrodes and the electrodes are connected to a voltmeter.
a) (0.2 points) What is the standard potential of the cell?
b) (0.2 points) What reaction takes place in the anode and the cathode? What is the direction of electron movement through the external circuit? Draw a scheme of the cell.
c) (0.4 points) What is the equilibrium constant of the reaction at $25^{\circ} \mathrm{C}$?
d) (0.6 points) What is the cell potential if $\left[\mathrm{H}^{+}\right]$is decreased from its standard value to $10^{-4} \mathrm{M}$ keeping constant the concentration of all other species?
Data: $\mathrm{E}^{0}\left(\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}\right)=1.512 \mathrm{~V} ; \mathrm{E}^{0}\left(\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}\right)=0.771 \mathrm{~V}$
7.- (1,2 point) Complete the following set of reactions and draw the stereoisomers of product B.

8. (1,4 point) Product \mathbf{A} is obtained reacting benzene with one mol of $\mathrm{CH}_{3} \mathrm{Cl}$ using AlCl_{3} as catalyst. A is subjected to the following set of reactions: a) Br_{2} in the presence of iron as catalyst giving a single product B because of steric hindrance, b) magnesium under anhydrous conditions (ether) giving product \mathbf{C}, c) carbon dioxide and subsequently water, giving the product \mathbf{D}, d) thionyl chloride giving \mathbf{E} which reacts with methylamine giving \mathbf{F}. Deduce the structural formulas of compounds \mathbf{A} to \mathbf{F}.

