
Security Engineering

Part III – Network Security

Security Protocols (I): SSL/TLS

Juan E. Tapiador

jestevez@inf.uc3m.es

Department of Computer Science, UC3M

Security Engineering – 4th year BSc in Computer Science, Fall 2011

2

Preliminaries

SSL: Secure Socket Layer (Netscape)

 v1 (1990-1994). Internal use. Never released

 v2 (1994). Usable but lots of security vulnerabilities

 v3 (1996). Stable. Basis for TLS 1.0

TLS: Transport Layer Security

 RFC 2246

 Free open-source implementation at http://www.openssl.org

 TLS 1.0 aprox. = SSL 3.0 with some changes

SSL/TLS gives transport-layer security

 TCP (reliable end-to-end transport required)

 Applications must undergo slightly modifications

3

Preliminaries

SSL usage:

 Encryption of messages exchanged between client and server

 E.g., credit card numbers, e-mails, online banking, ...)

 Authentication of communication parties:

 Ensure server authenticity

 Ensure client authenticity (optional)

SSL in HTTP transactions:

 https://·······

 Lock displayed in browser

 Maybe a warning

4

SSL – Architecture

SSL application

data protocol

SSL Record Protocol: authentication and encryption.

Upper layers: session establishment, parameter negotiation, etc.

5

SSL – Session vs Connection

SSL session

 Association between a client and a server

 (hostS, portS, hostC, portC)

 Created by the Handshake Protocol

 Defines a number of shared cryptographic parameters

 Algorithms, master secret (MS), certificates, key lengths, ...

 Can be shared by multiple SSL connections

 Idea: avoid repeated used of Handshake Protocol (costly)

SSL connection

 Transient communication link

 Associated with an SSL session

 Stated defined by: nonces, secret keys used by MAC and

 encryption algorithms, IVs, sequence numbers.

 Keys derived from MS created during Handshake.

6

SSL Handshake Protocol

SSL uses symmetric cryptography for:

 MACs and encryption (Record Protocol)

 Different keys for each communication party!

In addition to key establishment, the Handshake Protocol has among

its goals:

 Client and server authentication

 Server almost always authenticated

 Client rarely authentication, though possible

 Useful model for most e-commerce applications

 Secure negotiation of the ciphersuite (algorithms + parameters)

 Encryption

 Hash function

 Authentication method

 Key establishment

7

SSL Handshake Protocol

Key establishment

 Various mechanisms supported

 RSA-based: C chooses PMS and sends it to S using S’s public key

 Diffie-Hellman

Entity authentication

 Again various mechanisms supported:

 RSA-based: ability to correctly decrypt PMS and generate a valid

 MAC (using keys derived from PMS). This implicitly authenticates

 S

8

SSL Handshake Protocol

Key derivation

 Keys used by Record Protocol for encryption and MAC are derived

 from PMS:

 MS obtained from (PMS, client nonce, server nonce) through a

 hash function

 Key_block obtained from (MS, client nonce, server nonce)

 through repeated application of hash function

 Keys obtained from Key_block

9

SSL Handshake Protocol

Protocol messages:

Usual SSL configuration:

 No client authentication

 Cliente sends PMS using S’s RSA public key, obtained from its

 certificate

 Server authenticated if capable of decrypting PMS and

 construct a valid finish message

M1: C  S: ClientHello
 Cliente starts connection

 Sends version number

 Sends ClientNonce (28 random bytes+ 4-byte timestamp)

 Sends ciphersuite (key exchange, authentication methods, encryption

 and MAC algorithms, hash funcitons)

10

SSL Handshake Protocol

M2: S  C: ServerHello, ServerCertChain, ServerHelloDone
 Server sends version number

 Sends ServerNonce and SessionID

 Chooses ciphersuite from C’s list

 ServerCertChain: needed by client to verify S’s public key through TTP

 (optional) CertRequest: if C to be authenticated

 Finally, ServerHelloDone

M3: C  S: ClientKeyExchange, ChangeCipherSpec, ClientFinished
 ClientKeyExchange: contains encrypted PMS

 ChangeCipherSpec: from now on, everything encrypted+authenticated

 (optional) ClientCertificate, ClientCertificateVerify

 Finally, ClientFinished

 Contains MAC of all messages (both directions) exchanged

so far.

11

SSL Handshake Protocol

M4: S  C: ChangeCipherSpec, ServerFinished
 Server starts encryption+authentication

 ServerFinished contains:

 MAC of all messages exchanged (both directions) so far

 Correct key_block needed!

 Only computable if S has obtained MS and has decrypted M3

There’s a possibility to renegotiate the ciphersuite:

 Useful to reuse MS over multiple connections…

 … but keys are recomputed using new nonces

 Can be done during one session

 Protected by Record Protocol

12

SSL Handshake Protocol
Source: Wikipedia

13

SSL Handshake Protocol

Source: Wikipedia

14

SSL Alert & Change Ciphersuite

Alert Protocol
 Manages SSL session and error/warning messges:

 Unexpected message

 Bad record MAC

 Decompression failure

 Bad certificate

 Certificate revoked

 Certificate expired

 Etc...

Change Ciphersuite Protocol

 1 message only

 Used to announce that one party will immediately change to the

 recently negotiated ciphersuite

Both executed on top of Record Protocol

15

SSL Record Protocol

Source: Stallings

16

SSL Record Protocol

Confidentiality

 Symmetric encryption

 IDEA, RC2-40, DES-40, DES, 3DES, Fortezza, RC4-40, ...

 Message is optionally compressed before encryption, e.g.

 using Lempel-Ziv (ZIP)

Integrity & message authentication

 MAC (with a shared key)

17

SSL vs TLS

 Standard RFC 2246, similar to SSL 3.0

 TLS version numbers:

 SSL 3.1 (TLS 1.0)

 SSL 3.2 (TLS 1.1)

 SSL 3.3 (TLS 1.2)

 Uses HMAC as MAC algorithm

 Different method for deriving master_secret and key_block

 PRF based on HMAC with MD5 or SHA-1

 More warning and error messages

 More client certificates supported

 Variable-length padding

 Used to hide the length of short messages

 Protects against traffic analysis attacks

 More crypto algorithms supported

 Etc...

