Security Engineering Part III – Network Security

Security Protocols (I): SSL/TLS

Juan E. Tapiador jestevez@inf.uc3m.es Department of Computer Science, UC3M

Security Engineering – 4th year BSc in Computer Science, Fall 2011

Preliminaries

SSL: Secure Socket Layer (Netscape)

- v1 (1990-1994). Internal use. Never released
- v2 (1994). Usable but lots of security vulnerabilities
- v3 (1996). Stable. Basis for TLS 1.0
- **TLS**: Transport Layer Security
 - RFC 2246
 - Free open-source implementation at http://www.openssl.org
 - TLS 1.0 aprox. = SSL 3.0 with some changes

SSL/TLS gives transport-layer security

- TCP (reliable end-to-end transport required)
- Applications must undergo slightly modifications

Preliminaries

SSL usage:

- Encryption of messages exchanged between client and server
 - E.g., credit card numbers, e-mails, online banking, ...)
- Authentication of communication parties:
 - Ensure server authenticity
 - Ensure client authenticity (optional)

SSL in HTTP transactions:

- https://....
- Lock displayed in browser
- Maybe a warning

🖉 Aer Lingus - Booking Ir	formation - Microsoft Inter	net Explorer			. 🗆 🗙
File Fik. View Favorit	es <u>T</u> ools <u>H</u> elp				2
💼 https://www.flyaerlingus.com/cgi-bin/obel01im1/bookonline/loginLookupDispatchAction.do?BY_SessionID=@@@@2127578 🚽 🔁 Go					
					-
	socom				
- Book Flight	Booking I	nformati	on		
Aer Lingus Home	booking 1	morman			
Booking Help	For security reasons you have 7 minutes to complete this page				
Conditions of					
Terms of Lise	Passenger Details				
Privacy Policy	* Dequired Fields				
Unaccompanied	lice nacconders' full names (not initials) as they annear on nassnorts				
child & infant information	Tupo Titlo * First Namo * Family Namo * Soat Proferen				200
Start Over	Type Inte	i ii st nume		Seutrieleie	IICC
Confirm	Adult 🗾				
Purchase	Please note that Seat Preferences are offered on Aer Lingus transatlantic flights on				
Duine					
Price	Confirmation Details				
Select 🧯	Please ensure email address is accurate & that your account is active:				
Plan	Passenger Email Address (no				
	Bassonger Contact	Bhone Number *			
C Done					/

SSL – Architecture

SSL Record Protocol: authentication and encryption.

Upper layers: session establishment, parameter negotiation, etc.

SSL – Session vs Connection

SSL session

- Association between a client and a server
 - (host_S, port_S, host_C, port_C)
- Created by the Handshake Protocol
- Defines a number of shared cryptographic parameters
 - Algorithms, master secret (MS), certificates, key lengths,
- Can be shared by multiple SSL connections
- Idea: avoid repeated used of Handshake Protocol (costly)

SSL connection

- Transient communication link
- Associated with an SSL session
- Stated defined by: nonces, secret keys used by MAC and encryption algorithms, IVs, sequence numbers.
- Keys derived from MS created during Handshake.

SSL uses <u>symmetric cryptography</u> for:

- MACs and encryption (Record Protocol)
- Different keys for each communication party!

In addition to key establishment, the Handshake Protocol has among its goals:

- Client and server authentication
 - Server almost always authenticated
 - Client rarely authentication, though possible
 - Useful model for most e-commerce applications
- Secure negotiation of the ciphersuite (algorithms + parameters)
 - Encryption
 - Hash function
 - Authentication method
 - Key establishment

Key establishment

- Various mechanisms supported
 - RSA-based: C chooses PMS and sends it to S using S's public key
 - Diffie-Hellman

Entity authentication

- Again various mechanisms supported:
 - RSA-based: ability to correctly decrypt PMS and generate a valid MAC (using keys derived from PMS). This implicitly authenticates S

Key derivation

- Keys used by Record Protocol for encryption and MAC are derived from PMS:
 - MS obtained from (PMS, client nonce, server nonce) through a hash function
 - Key_block obtained from (MS, client nonce, server nonce) through repeated application of hash function
 - Keys obtained from Key_block

Protocol messages:

Usual SSL configuration:

- No client authentication
- Cliente sends PMS using S's RSA public key, obtained from its certificate
- Server authenticated if capable of decrypting PMS and construct a valid *finish* message

M1: C \rightarrow S: ClientHello

- Cliente starts connection
- Sends version number
- Sends ClientNonce (28 random bytes+ 4-byte timestamp)
- Sends ciphersuite (key exchange, authentication methods, encryption and MAC algorithms, hash funcitons)

M2: S → C: ServerHello, ServerCertChain, ServerHelloDone

- Server sends version number
- Sends ServerNonce and SessionID
- Chooses ciphersuite from C's list
- *ServerCertChain*: needed by client to verify S's public key through TTP
- (optional) CertRequest: if C to be authenticated
- Finally, ServerHelloDone

M3: C → S: ClientKeyExchange, ChangeCipherSpec, ClientFinished

- ClientKeyExchange: contains encrypted PMS
- ChangeCipherSpec: from now on, everything encrypted+authenticated
- (optional) ClientCertificate, ClientCertificateVerify
- Finally, *ClientFinished*
 - Contains MAC of all messages (both directions) exchanged so far.

M4: S → C: ChangeCipherSpec, ServerFinished

- Server starts encryption+authentication
- ServerFinished contains:
 - MAC of all messages exchanged (both directions) so far
 - Correct key_block needed!
 - Only computable if S has obtained MS and has decrypted M3

There's a possibility to renegotiate the ciphersuite:

- Useful to reuse MS over multiple connections...
- ... but keys are recomputed using new nonces
- Can be done during one session
- Protected by Record Protocol

Source: Wikipedia

Source: Wikipedia

SSL Alert & Change Ciphersuite

Alert Protocol

- Manages SSL session and error/warning messges:
- Unexpected message
 - Bad record MAC
 - Decompression failure
 - Bad certificate
 - Certificate revoked
 - Certificate expired
 - Etc...

Change Ciphersuite Protocol

- 1 message only
- Used to announce that one party will immediately change to the recently negotiated ciphersuite

Both executed on top of Record Protocol

SSL Record Protocol

Source: Stallings

SSL Record Protocol

Confidentiality

- Symmetric encryption
- IDEA, RC2-40, DES-40, DES, 3DES, Fortezza, RC4-40, ...
- Message is optionally compressed before encryption, e.g. using Lempel-Ziv (ZIP)

Integrity & message authentication

MAC (with a shared key)

SSL vs TLS

- Standard RFC 2246, similar to SSL 3.0
- TLS version numbers:
 - SSL 3.1 (TLS 1.0)
 - SSL 3.2 (TLS 1.1)
 - SSL 3.3 (TLS 1.2)
- Uses HMAC as MAC algorithm
- Different method for deriving master_secret and key_block
 - PRF based on HMAC with MD5 or SHA-1
- More warning and error messages
- More client certificates supported
- Variable-length padding
 - Used to hide the length of short messages
 - Protects against traffic analysis attacks
- More crypto algorithms supported
- Etc...