Security Engineering Part III – Network Security

Security Protocols (II): IPsec

Juan E. Tapiador jestevez@inf.uc3m.es Department of Computer Science, UC3M

Security Engineering – 4th year BSc in Computer Science, Fall 2011

Preliminaries

Preliminaries

Preliminaries

We have application-specific security protocols

S/MIME, PGP, SSL/TLS, …

But

- Some problems are common
- Some problems are inherent to the network layer and won't be solved by just securing the app layer

Email	Web	Game		qu	DB queries SNN		MP	FTP		IM	
Т	UDP					Other Transport					
				Sec	ured I	P					

IPsec – A typical usage scenario

Protocol architecture and algorithms to provide

- Access control
- Data authentication
- Data integrity
- Confidentiality
- Detection of replayed packets
- Key management

Some applications

- Remote access using untrusted networks (e.g. Internet)
- Connectivity to various networks using untrusted networks (VPN, Virtual Private Networks)
- Some security features to routing (e.g., route announcements come from authorised router, no fake messages, etc.)
- Security enhancements to some applications
 - e-commerce

• ..

IPsec – A typical usage scenario

IPsec essentials

IPsec is optional in IPv4 and mandatory in IPv6

Two main protocols:

- Authentication Header (AH)
 - Data authentication + integrity, but no confidentiality
 - MAC-based using a shared secret key
- Encapsulating Security Payload (ESP)
 - Encrypts packets. Authentication is optional.
 - Based on various ciphers and encryption modes.

Security associations (SA)

- Bundle of algorithms and paramenters associated with one flow in one direction. Defines provided security services
- In a bidirectional communication, each host must establish an SA with the other party.
- Indexed in the local SADB by:
 - Security Parameter Index (SPI)
 - IP destination address
- So when a packet arrives, the host knows which SA manages it
- When establishing an SA, one must choose between AH or ESP, but not both simultaneously

IPsec modes of operation

- Transport mode
 - Only payload is protected
 - Used for securing end-to-end communications

IPsec modes of operation

- Tunnel mode
 - Protects the entire IP packet, including the IP header
 - Used to connect security gateways
 - Hosts not required to implement IPsec

AH protocol

- Provides
 - Data integrity
 - Data origin authentication
 - Protection against replay attacks (see Seq. No. in AH header) of the IP packet

AH protocol

AH

hdr

headers

TCP

headers

Data

IPv6

hdr

12

AH protocol

- Data Auth+Integrity based on an ICV (*Integrity Check Value*)
- In practice, implemented as a MAC:
 - AuthData = $HMAC_k(Payload)$
- Both hosts must share key k
- Why do we want a protocol providing *only* data auth+int.?
 - Useful in environments were encryption is restricted
 - Fast implementation
 - Receiver chooses whether he wishes to check it or not

ESP protocol

- Provides confidentiality by encrypting the IP packet
 - Various standard block ciphers supported: DES, 3DES, RC5, IDEA, CAST, ...
 - Most common mode: CBC (caution!)
 - Padding to avoid traffic analysis attack and also to fit block size required by the cipher
- It provides AH-like services too:
 - Data origin authentication
 - Data integrity
 - Detection of replay attacks
- So ESP admits three configurations:
 - Authentication-only (WHY?)
 - Encryption-only (DON'T!)
 - Encryption+Authentication

ESP protocol

ESP protocol

IPsec protocols and modes

	SA transport mode	SA tunnel mode		
AH	Authenticates : payload + parts of IP header + IPv6 extensions	Authenticates: internal IP packet + parts of external IP header		
ESP DANGER CLOSE (Enc. Only)	Encrypts: payload + any IPv6 extension	Encrypts: internal IP packet		
ESP with Auth	Encrypts : payload + any IPv6 extension. Authenticates : payload only	Encrypts: internal IP packet Authenticates: internal IP packet		

SA combinations

IPsec: key management

- AH and ESP require shared keys (typically 2 pairs per comm.)
- **ISAKMP** (Internet Security Association and Key Management Protocol)
 - Framework for authentication (entity) and key exchange
 - Authenticated keying material provided:
 - Manually with pre-shared keys
 - Internet Key Exchange (IKE, IKEv2)
 - Kerberized Internet Negotiation of Keys (KINK)
 - IPSECKEY DNS records