Security Engineering Part II – Access Control

Juan E. Tapiador

jestevez@inf.uc3m.es

Department of Computer Science, UC3M

Security Engineering – 4th year BSc in Computer Science, Fall 2011

Overview

- One major security task is to *prevent* and *detect* unauthorised actions over information.
- Measures depending on how the attacker accesses the information:
 - direct access \rightarrow cryptography
 - $-\,$ access through a software layer \rightarrow access control
- Access control techniques implement a security policy in the software used to access information:
 - Operating systems
 - Databases
 - Web servers
 - Network traffic
- Access control can (must!) be implemented at several layers

Definitions

- Object: Entity that can be accessed (a file, a program, ...)
- Access operations: Actions executed over objects (read, write, delete, copy, execute, ...)
- Subject: Entity who executes access operations over objects.
- Access control policy: Rules establishing what is permitted and what is forbidden.
- Access control model: Formalism that allows to write down and process an access control policy.
- Access control mechanism: System/Technique that implements and enforces an access control policy.

System model

The access matrix

- A simple way of representing access policies
- \$\mathcal{A}[s_i, o_j]\$ = Access operations subject \$s_i\$ is authorised to
 perform over object \$o_j\$
- Example:

	$\mathbf{o_1}$	02	• • •	$\mathbf{o}_{\mathbf{m}}$
$\mathbf{s_1}$	rwx	rw	• • •	r
$\mathbf{s_2}$	r	-		rwx
÷	÷	÷	·	÷
$\mathbf{s_n}$	х	rw		W

Remarks:

- The access matrix is a conceptual vehicle, not a proper data structure
- Scalability problems: In large systems the AM is
 - huge
 - sparse
- Common implementations:
 - $\hspace{0.1 columns} \mathsf{ACLs}$
 - rows \rightarrow capabilities
 - hybrid \rightarrow authorisation relationships

Access Control List (ACL)

ACL	s_1	s_2	• • •	s_n
$\mathbf{o_1}$	rwx	r	•••	х

- Each object stores its access control information
- Advantages It's easy to...
 - check what privileges a user has over an object
 - revoke all privileges over an object
- Drawbacks It's costly to...
 - determine a user's privileges (over all objects)
 - revoke a user's privileges (over all objects)

Capabilities

Capability	o_1	02	• • •	o_n
$\mathbf{s_2}$	r	-	• • •	rwx

- Each user carries with him his access privileges
- Advantages / Drawbacks
 - \rightarrow Dual to ACLs
- More appropriate than ACLs for distributed systems
 - $\rightarrow~$ Slightly related to attribute certificates

Authorisation relationships

Subject	Object	Access Op.	
s_1	o_1	rwx	
s_1	o_2	rw	
s_2	o_1	×	
:	:		

- Hybrid approach store non-empty entries of the AM
- Combines advantages of ACLs and capabilities
- Generally implemented in a relational $\mathsf{DB} \to \mathsf{very}$ efficient queries

Extensions: Groups and Roles

- Common goals:
 - Facilitate design and maintenance of access control policies
 - Capture structure and dynamics of the organisation
- A group is a set of subjects
- A role is a set of access privileges that one or more subjects can assume
- Role-Based Access Control (RBAC)
 - Users assigned to roles (UA, many-to-many relation)
 - Permissions assigned to roles (PA, many-to-many relation)
 - User session \rightarrow subset of roles are activated by a user
 - Role hierarchies (generally a POSET)
 - Constraints (e.g. separation of duty)

Discretionary Access Control (DAC)

Model: Basic access matrix + 2 additional elements:

- 1. Every object is associated with a specially designated subject \rightarrow \mathbf{Owner}
 - Generally the creator, though not necessarily
- 2. Only the owner can assign access privileges over an object.
 - Goal: Access controlled by the owner of the object

Extensions:

- Ownership transfer
- Delegation

Discretionary Access Control (DAC)

The Trojan Horse Problem

• By themselves, DAC policies cannot enforce information flow policies.

Mandatory Access Control (MAC)

- Emerged from confidentiality requirements of the military but has broad applications for integrity and separation objectives.
- Goal is to confine the flow of information to one direction in a lattice of security labels
 - Information flow is controlled by assigning each object a security class (or security label)
 - Whenever information flows from object x to object y, there is an accompanying flow between their respective classes
- Various models: Bell-LaPadula, Biba, Gougen-Meseguer, Brewer-Nash, ...
- Formalised by Denning in the late 1970s. More generally known as Lattice-Based Access Control (LBAC)

LBAC

Definition [Information flow policy] – A triple $\langle SC, \rightarrow, \oplus \rangle$ where:

- SC is a set of security classes
- $\rightarrow \subseteq SC \times SC$ is a binary can-flow relation on SC
- $\oplus: SC \times SC \to SC$ is a binary class-combining (or join) operator on SC.

Examples: (See the Hasse diagrams!)

- 1. High-Low policy
- 2. Isolated classes

Note: Can-flow is often called *dominance* relation, but the other way round!

Definition [Denning's axioms] -

- (i) The set of security clases SC is finite
- (ii) The can-flow relation \rightarrow is a partial order on SC
- (iii) SC has a lower bound w.r.t. \rightarrow
- (iv) The join operator \oplus is a totally defined least upper bound operator:
 - (a) $\forall A, B \in SC, A \to A \oplus B \text{ and } B \to A \oplus B$ (b) $\forall A, B, C \in SC$, if $A \to C$ and $B \to C$ then $A \oplus B \to C$

The military / government lattice

- Security classes (a.k.a. *classification levels* vary from country to country, but most have 4 o 5 classes corresponding to the risk incurred if information is made publicly available :
 - Top Secret (TS) exceptionally grave damage
 - Secret (S) grave damage
 - Confidential (C) damage / prejudicial
 - Restricted (R) undesirable effects
 - Unclassified (U) technically no classification
- See e.g. en.wikipedia.org/wiki/Classified_information
- Users are also assigned a security class: clearance.
- Additionally, access is restricted on a need to know basis.

LBAC

Examples

- Subset lattices
- Product lattices (totally ordered lattice + subset lattice)

Bell-LaPadula (BLP)

- One of the earliest MAC models (1973)
- Targets confidentiality
- · Basic idea: augment DAC with MAC policies
 - Authorisations specified by a DAC matrix D...
 - ... but the operation must be authorised by the MAC policy
- Users might have control over $D, \mbox{ but generally not over the MAC policy}$

Bell-LaPadula (BLP)

Model (simplified):

- $\mathcal{O} = \{o_1, o_2, \dots, o_n\}$ objects
- $\mathcal{S} = \{s_1, s_2, \dots, s_n\}$ subjects
- $\forall o \in \mathcal{O} \; : \; \lambda(o)$ security classification of o
- $\forall s \in \mathcal{S} \; : \; \mu(s)$ security clearance of s
- \succeq a total ordering over ${\mathcal S}$ and ${\mathcal O}$
 - We write $\mu(s) \succeq \lambda(o)$, meaning that clearance of s is greater than or equal to confidentiality of o.
- 3 basic properties:

Bell-LaPadula (BLP)

Simple-security property – Subject s can read object o only if $\mu(s) \succeq \lambda(o)$

No Read Up (NRU)

★-property – Subject s can write object o only if $\lambda(o) \succeq \mu(s)$

No Write Down (NWD)

Tranquility property – Classifications $\lambda(o)$ and clearances $\mu(s)$ cannot be changed while the system is running.

Notes:

- How does information flow?
- Note the "only ifs" !!! Mandatory controls are necessary but not sufficient

Integrity models

- Commercial vs Military applications
- Focus on preserving data integrity
- Plenty of models:
 - Biba
 - Goguen-Meseguer
 - Sutherland
 - Clark-Wilson
 - Brewer-Nash
- Can be integrated with confidentiality models (e.g. BLP) into a single hierarchy

Biba model

- Ken Biba (1977)
- Dual to BLP

Model (simplified):

•
$$\mathcal{O} = \{o_1, o_2, \dots, o_n\}$$
 objects

- $\mathcal{S} = \{s_1, s_2, \dots, s_n\}$ subjects
- $\forall o \in \mathcal{O} \; : \; \sigma(o) \text{ integrity classification of } o$
- $\forall s \in \mathcal{S} \; : \; \tau(s)$ integrity clearance of s
- \succeq a total ordering over ${\mathcal S}$ and ${\mathcal O}$
 - We write $\tau(s) \succeq \sigma(o)$, meaning that clearance of s is greater than or equal to integrity level of o.
- 3 basic properties:

Biba model

Simple-integrity property – Subject s can read object o only if $\sigma(o) \succeq \tau(s)$

No Read Down (NRD)

 $\bigstar\text{-integrity property}$ – Subject s can write object o only if $\tau(s)\succeq\sigma(s)$

- No Write Up (NWU)

Tranquility property – Integrity classifications $\sigma(o)$ and clearances $\tau(s)$ cannot be changed while the system is running.

Notes:

- How does information flow?
- Note the "only ifs" !!! Mandatory controls are necessary but not sufficient

MLS systems

- Very expensive
- Complex administration
 - Trusted users
 - Problems with declassification
- · Avoid both undesirable and desirable accesses
- Inflexibility

Multilateral security

- Goal is not to prevent information flowing down a hierarchy, but *across* between departments.
- Lateral Information Flow Controls
- Three motivating applications
 - Healthcare Patient's privacy. Data only accessible to some departments.
 - National Intelligence Spies/collaborators in different countries.
 - Clash of interests within an organisation E.g., law firms, consultancy, …
- (Compartmented security or compartmentation in the US)
- Very general and very complex problem

- Brewer and Nash (1989)
- MAC model focused on confidentiality, particularly in mitigating conflicts of interests
- Goal is to prevent information leakage between competitors
 - One user cannot access data of mutually competing companies
- Data is grouped into three layers:
 - Objects, each concerning a single corporation
 - Datasets of objects which concern the same corporation
 - Conflict of interest classes containing datasets whose corporations are in competition
- Policy implemented through mandatory separation rules known as *Chinese walls*.

Formal model

- S subjects
- $\mathcal O$ objects
- \mathcal{D} datasets
- C conflict of interest classes
- $\mathbf{y}: \mathcal{O} \to \mathcal{D}$
 - For each $o \in \mathcal{O}$, $\mathbf{y}(o)$ gives the dataset to which o belongs.
- $\mathbf{x}: \mathcal{D} \to \mathcal{C}$
 - For each $d \in \mathcal{D}$, $\mathbf{x}(d)$ gives the conflict of interest class to which d belongs.

Simple-security property [Informal]

People are only allowed read access to information which is not held to conflict with any other information that they already possess.

(It's important to remember who has accessed what!)

Simple-security property – Let $N[s_i, o_j], s_i \in S, o_j \in O$ be a Boolean matrix, with $N[s_i, o_j] = \text{TRUE}$ iff s_i has accessed o_j . Then s can access o only if $\forall \hat{o} \mid N[s, \hat{o}] = \text{TRUE}$:

$$- \mathbf{y}(o) = \mathbf{y}(\hat{o})$$
, or

 $- \mathbf{y}(o) \notin \mathbf{x}(\mathbf{y}(\hat{o}))$

★-property [Informal]

Write access is only permitted if (1) access is permitted by the simple security rule; and (2) no object can be read which is in a different company dataset to the one for which write access is requested <u>and</u> contains **unsanitised** information.

• Sanitisation takes the form of disguising a corporation's information, in particular to prevent the discovery of that corporation's identity. It's necessary to allow users to compare data relating to one corporation with that relating to other corporation, e.g. belonging to the same business sector.

Multilevel and multilateral security

- Each object has both a security level L_i and a security compartment C_i . The pair $\langle L_i, C_i \rangle$ defines the security class of the object.
- Same for users with clearances and compartments.
- Access policy?

Computer security evaluation and certification

- Framework(s) to assess the effectiveness of computer security controls built into a computer system.
- Generally used to classify (and select) systems to be used to process sensitive information.
- Three important standards:
 - US Trusted Computer System Evaluation Criteria (TCSEC), a.k.a. the Orange Book (see DoD Rainbow Series)
 - EUR Information Technology Security Evaluation Criteria (ITSEC)
 - INT The Common Criteria for Information Technology Security Evaluation (ISO/IEC 15408-1, v2.1), a.k.a. the Common Criteria, or simply CC.

- NCSC (NSA), 1983
- Updated 1985
- Obsolete. Replaced by CC
- Goals:
 - Give security standards to manufacturers
 - Define evaluation and cert. metrics
 - Establish conditions to select systems

• Four divisions, some of them further divided into classes:

D C1 C2 B1 B2 B3 A1 A1+

D – Minimal protection

System has been evaluated but fails to meet requirements for higher divisions

C – **Discretionary protection**

C1 – Discretionary security protection

Identification and authentication; Separation of users and data; DAC policy limiting access on an individual basis; System Documentation and user manuals.

C2 – **Controlled Access Protection**

Finely grained DAC; User accountability through login procedures; Audit trails; Object reuse; Resource isolation.

B – Mandatory protection

B1 – Labeled Security Protection

Informal security policy model; Data sensitivity labels; MAC policy over selected subjects and objects; Label exportation capabilities; Discovered flaws are removed or mitigated; Design specifications and verification.

B2 – Structured Protection

Clear security policy model; DAC and MAC extended to all subjects and objects; Analysis of covert storage channels; Structured into protection-critical and non-protection-critical elements; [...]

B3 – Security Domains

Security administrator role; Trusted system recovery procedures; Analysis of covert timing channels; [...]

A – Verified protection

A1 – Verified Design

Identical to B3 plus formal design and verification techniques and formal management and distribution procedures.

A1+ / Beyond A1

More security testing, verification, etc. down to the source code level where feasible; $\left[\ldots\right]$

Criticisms

- Focused on confidentiality
- Costly evaluation
- Inflexibility
- Amalgam of functionalities and assurances
- No separation of evaluation and certification
- Reference: http://www.iwar.org.uk/comsec/ resources/standards/rainbow/5200.28-STD.html

- Information Technology Security Evaluation Criteria (ITSEC, 1990)
- Information Technology Security Evaluation Methodology (ITSEM, 1993)
- Definition of security:
 - Confidentiality, Integrity, Availability
- Two "objects":
 - IT products
 - IT systems
- Reference: http://www.iwar.org.uk/comsec/ resources/standards/itsec.htm

- Three basic concepts:
 - Security target (why?)
 - Security function (what?)
 - Security mechanism (*how*?)
 - \rightarrow Target of evaluation (TOE)
- **TOE:** System or product subject to security evaluation
- **Security functions:** Identification and authentication; access control; accountability; audit; object reuse; accuracy; service reliability; data exchange.
- Security target: Document with the target's security features, which have to be evaluated. Includes implemented functions, security goals, theats and whatever mechanisms employed.

- 10 Predefined functionality classes:
 - F-C1, F-C2, F-B1, F-B2, F-B3
 - F-IN, F-AV, F-DI, F-DC, F-DX
- Evaluation assurance level: Ascending levels of confidence that can be placed in the TOE meeting its security objectives:
 - E0 Inadequate assurance
 - E1 Functionally tested
 - E2 Structurally tested
 - E3 Methodically tested and analysed
 - E4 Semi-formally designed and tested
 - E5 Semi-formally verified design and tested
 - E6 Formally verified design and tested

- ITSEC vs TCSEC Approximate equivalences:
 - E0 D
 - F-C1,E1 C1
 - F-C2,E2 C2
 - F-B1,E3 B1
 - F-B2,E4 B2
 - F-B3,E5 B3
 - F-B3,E6 A

ITSEM

- http://www.commoncriteriaportal.org
- Common Criteria for Information Technology Security Evaluation (ISO 15408) – CC
- Common Methodology for Information Technology Security Evaluation (ISO 18045) – CEM
- International standard. Originated out of ITSEC, CTPPEC (Canadian) and TCSEC.

Key concepts

- TOE: as in ITSEC
- Security Target: as in ITSEC. Composed of SFRs
- Sequrity Functional Requirements (SFRs): CC offers a standard catalogue, with dependencies among them.
- **Protection Profile (PP)**: Document that identifies security requirements for a class of security devices, e.g. firewalls, smart-card for signing, etc. Serve as templates.
- Security Assurance Requirements (SARs): Measures taken during development and evaluation of the product to assure compliance with the claimed security functionality. E.g., code has been managed through a change management system, functional testing done, etc.

Key concepts

- Evaluation Assurance Level (EAL): Measures depth and rigor of an evaluation. From EAL1 to EAL7.
 - Similar to EALs in TCSEC
 - Higher EALs do not necessarily mean better security, only that the claimed security assurance of the TOE has been more extensively verified.
 - Augmented EALs, e.g. EAL5+: assurance requirements beyond the minimum required for a particular EAL.

Some final remarks:

• Evaluation can be lengthy and expensive:

• **Remember:** This is no Holy Grail: It does NOT ensure "this stuff gives me security," only that the vendor's claims have been more or less thoroughly verified.