Introducción a la Teoría de Autómatas y Lenguajes Formales

Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

Grado Ingeniería Informática Teoría de Autómatas y Lenguajes Formales

Objetivos

- Presentar la normativa, los contenidos y objetivos de la asignatura poniendo énfasis en las aplicaciones prácticas de la materia que se va a estudiar.
- Conocer la contextualización histórica de la Teoría de Autómatas y lenguajes formales. Desde los orígenes hasta los distintos campos de los que se ha nutrido esta área de conocimiento (Ingeniería, Lenguajes y Gramáticas, y Matemáticas y Computabilidad).
- Conocer el esquema básico que se seguirá a través de la jerarquía de Chomsky sobre los autómatas, gramáticas y lenguajes formales.
- Conocer otras máquinas abstractas relacionadas que se encuentran fuera de la jerarquía de Chomsky.
- Conocer los límites de las máquinas abstractas que se estudiarán y sus problemas de complejidad.

Índice

El por qué de la Teoría de Autómatas

Relación con otras Áreas de Conocimiento

Disciplinas de la Computación según la "Educational Activities Board of IEEE":

Computer Engineering , Computer Science, Information Systems, Information Technologies, Software Engineering

Computer Science:

- "A pesar de la enorme amplitud de la informática, existen conceptos y habilidades que son comunes a la informática en su conjunto."
- "Todos los estudiantes de informática tienen que aprender a integrar la teoría y la práctica, a reconocer la importancia de la abstracción para apreciar el valor del buen diseño de ingeniería"

Fuente: Computing Curricula 2005. The Overview Report. http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf

- Ciencias de la Computación: cuerpo de conocimiento que se ocupa del estudio de los fundamentos teóricos de la información y la computación y de su implementación y aplicación en sistemas computacionales.
- Gibbs y Tucker (1986):
 - "No se debe entender que el objetivo de las Ciencias de la Computación sea la construcción de programas sino el estudio sistemático de los algoritmos y estructuras de datos, específicamente de sus propiedades formales"
 - Gibbs, N. E. and Tucker, A. B. 1986. A model curriculum for a liberal arts degree in computer science. Commun. ACM 29, 3 (Mar. 1986), 202-210. DOI= http://doi.acm.org/10.1145/5666.5667

Primera inmersión en la "Teoría de la Computación":

- Es anterior al invento del Computador (incluso del transistor)
- Propiedades MATEMÁTICAS FUNDAMENTALES de Software, Hardware y aplicaciones de los mismos. Responder a preguntas como:
 - ¿Cómo puede construirse un programa para resolver un problema?
 - ¿Resuelve el programa realmente el problema?
 - Cuánto se tarda en realizar un cómputo (complejidad temporal).
 - Cuanta memoria se necesita para realizar el computo (complejidad espacial).
 - Y el "modelo de computación" (Imperativo, POO, Programación. Lógica, etc.)
 - Qué se puede computar y qué NO se puede computar.

Aplicación directa de conceptos propios de las Ciencias de la Computación:

- Videojuegos
 - Comportamiento de personajes
- Compiladores y Procesamiento de Lenguaje Natural
 - Análisis Léxico en lenguajes programación (compilador).
 - Búsqueda de cadenas o comparación de "patrones"
 - Diseño de nuevos lenguajes de programación o ampliación
- Implementación de Protocolos Robustos
 - Para clientes o usuarios
 - E.g. Sistemas de Seguridad
- Criptografía Moderna (sus protocolos)
- •

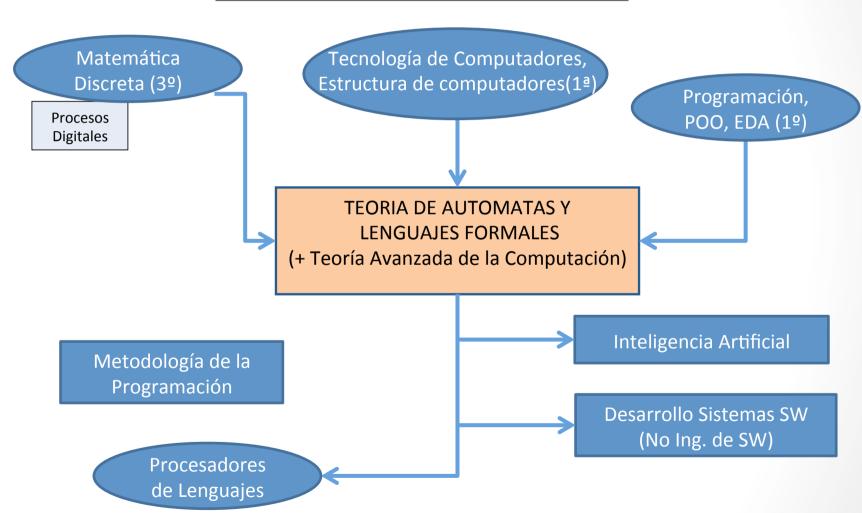
Aplicación directa de conceptos propios de las Ciencias de la Computación:

- •
- Construcción de sistemas computacionales más elegantes y sencillos.
- Diseño (Maquina Secuencial --> Código)
- Diseño de estructuras y "parsing": gramaticas (ej: XML)
 - Búsqueda de cadenas o comparación de "patrones"
- SW para diseñar y evaluar circuitos digitales.
- "Escanear" grandes cantidades de texto (web)
- SW para verificar sistemas que tiene un número finito de "estados"

- Teoría de la Computación:
 - ¿Aburrida y arcaica? NO, es Comprensible e Interesante.
- Proporciona al Ingeniero:
 - Aspectos teóricos (permite innovación)
 - Autómatas,
 - Representación Estructural (Gramáticas)
 - Autómatas y Máquinas para establecer limites de la Computabilidad.
 - Aspectos prácticos (ingeniería)

Índice

El por qué de la Teoría de Autómatas


Relación con otras Áreas de Conocimiento

Relación con otras áreas.

Grado en Ingeniería Informática

A. Sanchis, A. Ledezma, J.A. Iglesias, B. García, J. M.Alonso

Índice

El por qué de la Teoría de Autómatas

Relación con otras Áreas de Conocimiento

Máquinas, Lenguajes y Algoritmos

Tres pilares sustentan la Teoría de Lenguajes, Gramáticas y Autómatas

AUTÓMATAS (ingeniería)

- Leonardo Torres, 1915
- Shannon, 1938
- Mc Culloch-Pitts, 1943
- Moore, 1956

LENGUAJES y GRAMÁTICAS (lingüística)

- · Panini, entre el 400 y 200 AC
- · Chomsky, 1967
- · Backus, ≈1960
- · Kleene, 1951
- Hirst, Tennant y Carbonell, 1981

COMPUTABILIDAD (matemáticas)

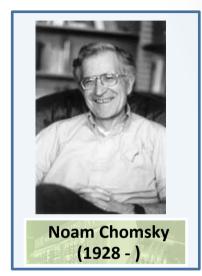
- · Hilbert, 1928
- Gödel, Kleene, Post y Turing, ≈1930
- · Church, 1936
- Rabin, 1960
- Cobhan, 1964
- Cook, 1972
- · Aho, Hopcroft, Ullman, 1974

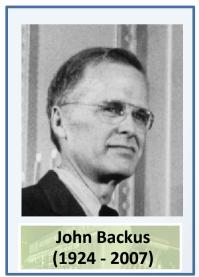
Máquinas, Lenguajes y Algoritmos

Máquinas o Autómatas

- Aplicación en campos muy diversos
- Manejan conceptos como "control", "acción", "memoria"
- Los objetos son controlados o recordados con símbolos, palabras o frases de algún tipo.
- Máquina de Moore y máquina de Mealy
- Circuitos combinatorios
- Autómatas Probabilísticos (incertidumbre en las transiciones)
- McCulloch-Pitts (1943) describieron los cálculos lógicos inmersos en un dispositivo denominado neurona artificial.
 - Redes de Neuronas Artificiales
- Autómatas Celulares (J.H. Conway, el juego de la vida).

Máquina de Turing Universal, Jim Wiked.

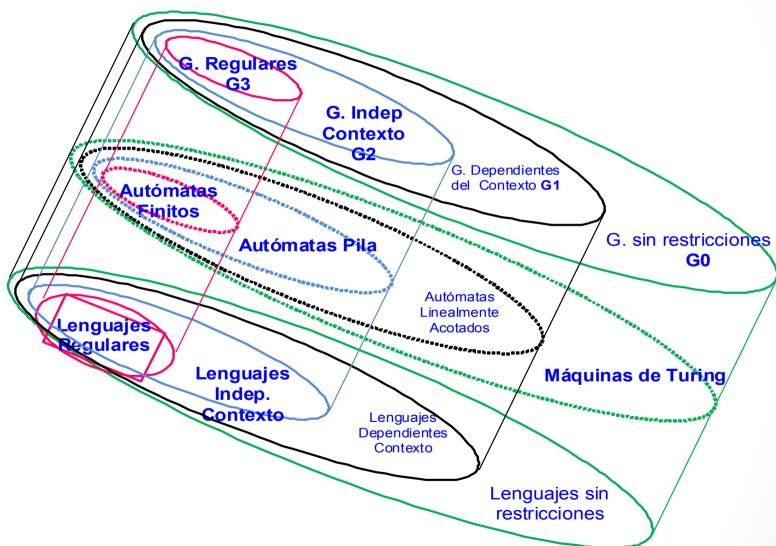


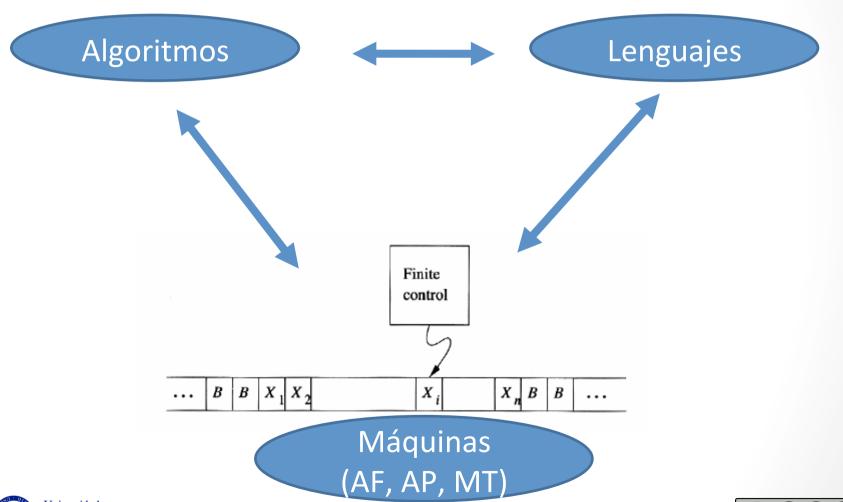

Máquinas, Lenguajes y Algoritmos

Lenguajes y Gramáticas

- Origen en la lingüística
- Noam Chomsky
 - Jerarquía de Chomsky (1956)

- "Backus normal form" (para gramática de ALGOL)
 - Lenguajes de Programación
 - Lenguajes Naturales
 - Sistemas de Comandos




A. Sanchis, A. Ledezma, J.A. Iglesias, B. García, J. M.Alonso

17

A. Sanchis, A. Ledezma, J.A. Iglesias, B. García, J. M.Alonso

Bibliografía

• Referencias básicas :

- 1. J. E. Hopcroft, R. Motwani, J. D. Ullman. *Introducción a la Teoría de Autómatas, Lenguajes y Computación*. Ed. Pearson Addison Wesley, 2008

 Capítulo 1. Introducción a lo Autómatas
- E. Alfonseca Cubero, M. Alfonseca Moreno, R. Moriyón Salomón. Teoría de Autómatas y Lenguajes Formales. Ed. McGraw-Hill, 2007
 Capítulo 1. Máquinas, Lenguajes y Problemas.

Referencias complementarias:

- 1. P. Isasi, P. Martínez, D. Borrajo. Lenguajes, Gramáticas y Autómatas: Un enfoque práctico. Ed. Addison-Wesley, 1997
 Capítulo 2. Lenguajes y Gramáticas Formales
- 2. D. M Kelley. Teoría de autómatas y lenguajes formales. Prentice-Hall, 1995 Capítulo 2. Lenguajes Regulares.
- 3. R. Penrose. La Nueva Mente del Emperador. DeBolsillo, 2011 Capítulo 1. ¿Puede tener mente un computador? Capítulo 2. Algoritmos y máquinas de Turing
- R. Penrose. Las sombras de la mente: hacia una comprensión científica de la consciencia. Mondadori. 1996
- 5. D.R. Hofstadter. Gödel, Escher, Bach: un eterno y grácil bucle. Tusquets, 1998

Introducción a la Teoría de Autómatas y Lenguajes Formales

Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

Grado Ingeniería Informática Teoría de Autómatas y Lenguajes Formales

