7. Máquinas de Turing.

Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

Grado Ingeniería Informática Teoría de Autómatas y Lenguajes Formales

Tipos de MT

Equivalencia y Variantes de MT

Introducción

Origen:

La Máquina de Turing (MT) fue descrita por Alan Turing en 1936.

AlanTuring.net

Alan Turing (Inglés: 1912 - 1956)

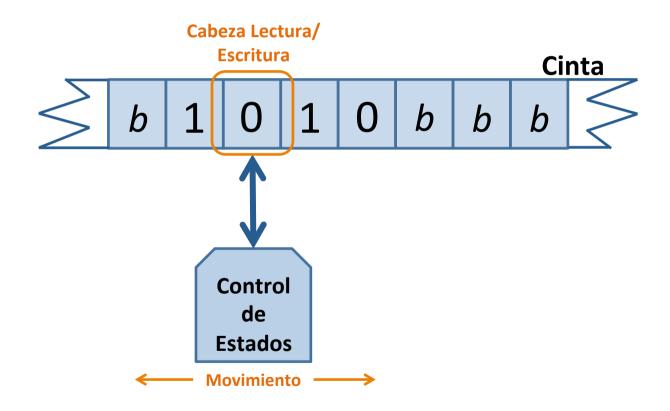
Fue un científico inglés que hizo grandes aportaciones en: matemáticas, criptoanálisis, lógica, filosofía, biología, ciencias de la computación, inteligencia artificial y vida artificial.

Es considerado uno de los padres de la ciencia de la computación. Es el precursor de la informática moderna.

Definición de una MT

- Dispositivo hipotético capaz de manipular símbolos en una tira de cinta considerando ciertas reglas. A pesar de su simplicidad, pueden simular la lógica de cualquier algoritmo de un computador.
- Una MT está formado por:
 - Cinta infinita dividida en celdas
 - Cabezal de lectura/escritura capaz de moverse sobre dicha cinta.

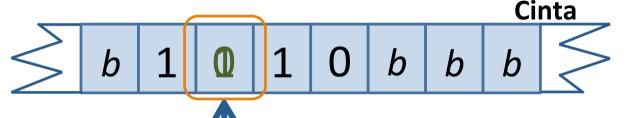
Diferentes versiones que simulan una MT



4

Definición de una MT

Representación:



Definición de una MT

Operaciones:

Estado:

Estando en un estado **P** y leyendo el símbolo de la celda de la cabeza de L/E (Ej: 0), se realizan (en este orden) las sig. acciones:

- 1. Pasa a un nuevo estado. (Ej: S)
- 2. Escribe un nuevo símbolo en la cinta (reemplazando el existente). (Ej: $0 \rightarrow 1$)
- 3. Mueve el cabezal de L/E hacia: Drcha, Izqda, o no se mueve (Ej: Izqda)

6

Definición de una MT

Definición Formal:

Una MT se define como una 7-tupla:

$$\mathsf{MT} = (\Gamma, \Sigma, b, Q, q_0, f, F)$$

Donde:

Símbolo		
Γ	Alfabeto de símbolos de la cinta.	
$\Sigma \subset \Gamma$	Alfabeto de entrada.	
$b \in \Gamma$	símbolo especial- espacio en blanco ($b\not\subset \Sigma$). Tb se representa como: \Box	
Q	conjunto finito de estados.	
$q_0 \in Q$	estado inicial.	
$F \subseteq Q$	conjunto de estados finales o de aceptación.	
f	función $Q \times G \rightarrow Q \times G \times \{I, D, P\}$ (donde <i>I:</i> Izqda, <i>D</i> : Drcha y <i>P:</i> Parada).	

Definición de una MT

Características:

- La cinta se supone infinita por ambos lados.
- Inicialmente la cinta contiene un número finito de símbolos consecutivos (de ∑) precedidos y seguidos por el símbolo b (o □).
- La cabecera de L/E está situada inicialmente sobre el elemento más a la izquierda de la palabra.
- Toda MT se representa por una tabla de transición (como el resto de Autómatas). Si la transición No es posible

 La MT se detiene.

f (Estados)	Símbolo	Símbolo	•••
Estado	(Estado, Símbolo, Movim.)	(Estado, Símbolo, Movim.)	
Estado	(Estado, Símbolo, Movim.)	(Estado, Símbolo, Movim.)	
		•••	

Ejemplo de una MT

 $MT_1 = (\Gamma = \{0,1,b\}, \Sigma = \{0,1\}, b, Q = \{q_0, q_0, q_0\}, q_0, f, F = \{q_F\})$

donde f:

f	0	1	b
$\rightarrow q_0$	$(q_0, 0, D)$	$(q_1, 1, D)$	$(q_F, 0, P)$
q_1	$(q_1, 0, D)$	$(q_0, 1, D)$	$(q_F, 1, P)$
$*q_F$			

Ejemplo de una MT

 $MT_1 = (\Gamma = \{0, 1, b\}, \Sigma = \{0, 1\}, b, Q = \{q_0, q_0, q_0\}, q_0, f, F = \{q_F\})$

donde f: f 0 1 bEstado Inicial (\Rightarrow)

Estado Final (*)

Representación: (Estado al que transita, Símbolo que se escribe en la cinta, Movimiento que realiza el cabezal de L/ E) Desplazamiento:

D -> Derecha

l -> Izquierda

P -> Parada

También puede epresentarse como: +,-, También puede representarse como: □

A. Sanchis, A. Ledezma, J.A. Iglesi

, J. M.Alonso

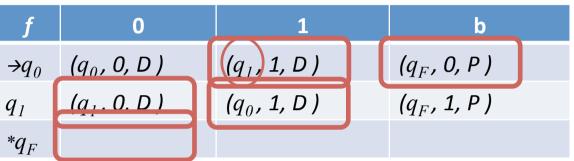
10

Ejemplo de una MT

 $MT_1 = (\Gamma = \{0, 1, b\}, \Sigma = \{0, 1\}, b, Q = \{q_0, q_0, q_0\}, q_0, f, F = \{q_F\})$

donde f:

f	0	1	b
$\rightarrow q_0$	$(q_0, 0, D)$	$(q_1, 1, D)$	$(q_F, 0, P)$
q_1	$(q_1, 0, D)$	$(q_0, 1, D)$	$(q_F, 1, P)$
$*q_F$			



Ejemplo de una MT

$$MT_1 = (\Gamma = \{0,1,b\}, \Sigma = \{0,1\}, b, Q = \{q_0, q_0, q_0\}, q_0, f, F = \{q_F\})$$

donde f:

Sin transiciones \rightarrow Paro de la MT

Cinta

b b 1 0 0 1 θ b

Inicio

Estado: q_I

12

Ejemplo de una MT

$$MT_1 = (\Gamma = \{0, 1, b\}, \Sigma = \{0, 1\}, b, Q = \{q_0, q_0, q_0\}, q_0, f, F = \{q_F\})$$

donde f:

f	0	1	b
$\rightarrow q_0$	$(q_0, 0, D)$	$(q_1, 1, D)$	$(q_F, 0, P)$
q_1	$(q_1, 0, D)$	$(q_0, 1, D)$	$(q_F, 1, P)$
$*q_F$			

¿Cómo funciona esta MT?

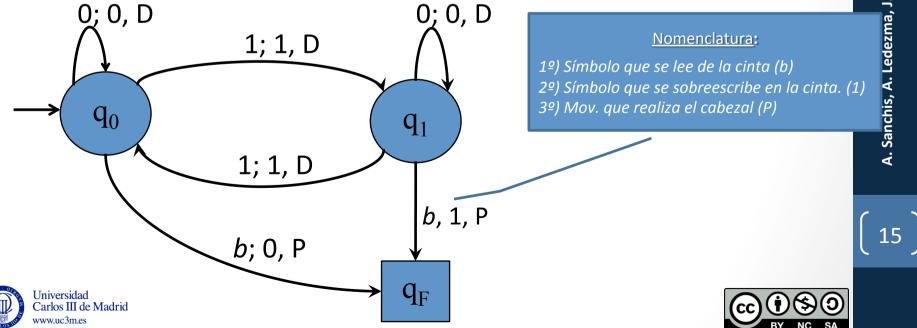
Al final de la palabra (en el primer b), escribe: 0 → Si el número de 1s de la palabra leída es Par 1 → Si el número de 1s de la palabra leída es Impar

Definición de una MT

Diagrama de Estados:

La función de transición también puede describirse en forma de diagrama de estados:

- Los nodos representan estados.
- Los arcos representan transiciones de estados.
- Cada arco es etiquetado con los prerrequisitos y los efectos de cada transición:
 - Símbolo inicial,
 - Símbolo que se reescribe,
 - Dirección del movimiento del cabezal.



Definición de una MT

Diagrama de Estados - Ejemplo:

f	0	1	b
$\rightarrow q_0$	$(q_0, 0, D)$	$(q_1, 1, D)$	$(q_F, 0, P)$
q_1	$(q_1, 0, D)$	$(q_0, 1, D)$	$(q_F, 1, P)$
$*q_F$			

Tipos de MT

Equivalencia y Variantes de MT

Tipos de MT

MT que actúa como TRANSDUCTOR:

Modifica el contenido de la cinta realizando cierta función.

MT que actúa como RECONOCEDOR:

- MT capaz de reconocer un lenguaje L.
- MT capaz de aceptar un lenguaje L.

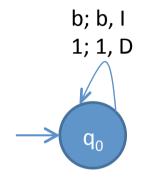
Tipos de MT

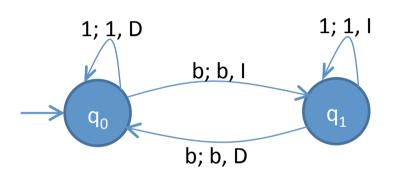
MT que actúa como TRANSDUCTOR:

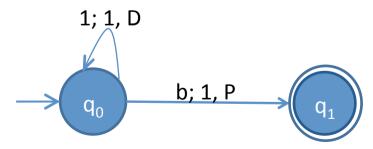
Modifica el contenido de la cinta realizando cierta función.

Ejs: MT que sustituye los dígitos por cero, MT que añade un bit de paridad a la entrada, MT que duplica el número de 1s que hay en la cinta

 Si la Entrada está bien formada: debe terminar en un Estado Final.


Si la Entrada No está bien formada:
 debe terminar en un Estado No Final.




Ejemplos de MT

Diferentes MT que no se detienen:

MT que calcula n+1 considerando el número n>=0 como una sucesión de 1s.

Tipos de MT

MT que actúa como TRANSDUCTOR:

Modifica el contenido de la cinta realizando cierta función.

MT que actúa como RECONOCEDOR:

- MT capaz de reconocer un lenguaje L.
- MT capaz de aceptar un lenguaje L.

Tipos de MT

MT que actúa como RECONOCEDOR:

- MT capaz de RECONOCER o ACEPTAR un lenguaje L.
 - Una MT RECONOCE un lenguaje L, si dada una entrada (w) en la cinta, la MT <u>SIEMPRE se para</u>, y lo hace en un EF si y sólo si: $w \in L$
 - Una MT ACEPTA un lenguaje L, si dada una entrada (w) en la cinta, la MT se para en un Estado Final si y sólo si: $w \in L$
 - Así, en este caso, si w ∉L, la MT podría no parar.

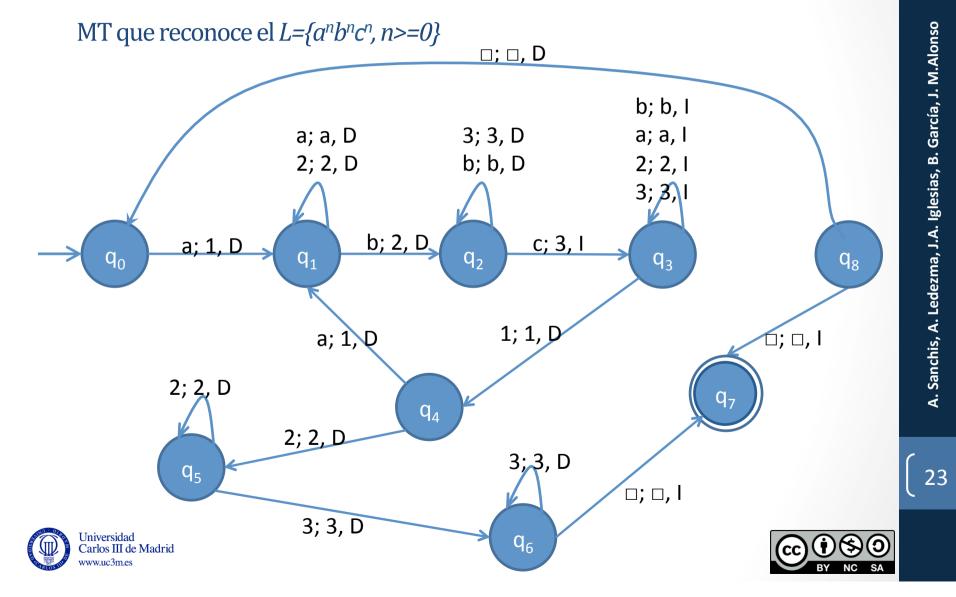

Ejs: MT que reconoce el lenguaje a*b*, MT que acepta el lenguaje aⁿbⁿcⁿ

Ejemplos de MT

MT que reconoce el $L=\{a^nb^n, n>=0\}$

 q_4

En este caso, el símbolo especial- espacio en blanco ($b \not\subset \Sigma$) se representa como: \Box , porque $b \subset \Gamma$


Entrada	Resultado
ab	Aceptada
ba	No Aceptada
aabb	Aceptada
aab	No Aceptada
abb	No Aceptada
aaaabbbb	Aceptada

22

Ejemplos de MT

Tipos de MT

Equivalencia y Variantes de MT

Equivalencia de MT

Dos MT son equivalentes si:

Ambas realizan la misma acción sobre TODAS sus entradas. Además, si una MT no se parara para alguna entrada, la otra tampoco podrá pararse.

- Si las MT actúan como Transductor:
 - Para cada entrada posible, los contenidos de la cinta al final del proceso deben ser iguales.
- Si las MT actúan como Reconocedor:
 - Ambas deben Aceptar y/o Reconocer las mismas palabras.

Variantes de MT

• Existen numerosas variantes de MT obtenidas al restringir algún aspecto de las mismas:

- Consideremos algunos ejemplos:
 - MT con alfabeto binario ($\Gamma = \{0, 1, b\}$).
 - MT limitada por un extremo.
 - MT con restricciones en el movimiento de L/E.

MT Universal (MTU)

- MT capaz de simular el comportamiento de cualquier MT.
- Una MTU contiene en su cinta:
 - 1. La descripción de otra MT,
 - 2. El contenido de la cinta de dicha MT,

y produce el como resultado de su ejecución, el mismo resultado que produciría la MT sobre su cinta.

7. Máquinas de Turing.

Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

Grado Ingeniería Informática Teoría de Autómatas y Lenguajes Formales

