Teoría de Autómatas y Lenguajes Formales

Prueba de Evaluación de Autómatas Finitos

Autores:

Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

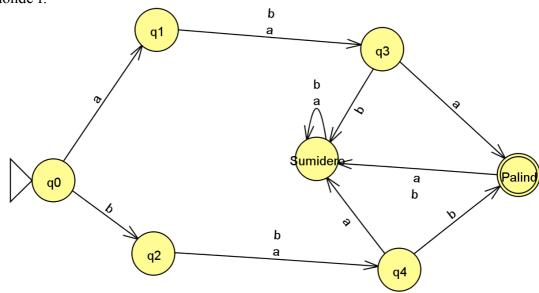
UNIVERSIDAD CARLOS III DE MADRID TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES. GRADO EN INGENIERÍA INFORMÁTICA.

1. Indica si las siguientes afirmaciones son Verdaderas o Falsas marcando con una X la casilla correspondiente.

Calificación:

Respuesta correcta: +0,3ptos. Respuesta incorrecta: -0.3 ptos. Sin respuesta: 0 ptos. Calificación máxima: **3 ptos**. Calificación mínima: 0 ptos.

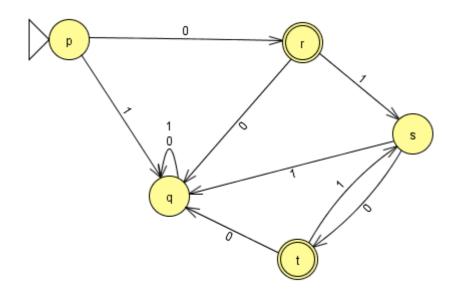
	Verdadero	Falso
Si un autómata puede realizar dos transiciones distintas con el mismo símbolo a partir de un determinado estado, entonces es no determinista.	X	
Un AFD es conexo si todos los estados son accesibles desde el estado final.		X
Si Q/E ₂ = Q/E ₃ , entonces Q/E ₄ = Q/E ₅ .	X	
$Si\ pE_5q\ entonces\ pE_2q.$	X	
En un AFND es posible llegar desde el estado inicial al final con dos sucesiones de movimientos distintas.	X	
Un AF no puede reconocer λ a menos que el estado inicial sea final.		X
pTq indica f(p,a)=q.		X
Si los autómatas mínimos de dos autómatas finitos son isomorfos, entonces los autómatas finitos son equivalentes.	X	
Hay determinados AFNDs que no pueden convertirse en AFDs.		X
El lenguaje reconocido por un AFD no conexo varía si eliminamos sus estados inaccesibles.		X



2. Obtenga el diagrama de transiciones del AFD que reconoce palíndromos (palabras que no varían si la lectura se realiza de izquierda a derecha o viceversa) de longitud 3 sobre el alfabeto de símbolos: {a, b}. (3,5 ptos).

SOLUCIÓN:

AFDSolucion = ({a,b}, {q0, q1, q2, q3, q4, Sumidero, Palind}, f, q0, Palind}


donde f:

3. Dado el siguiente AFD, hallar su correspondiente AFD mínimo (3,5 ptos).

SOLUCIÓN:

Aplicamos el algoritmo de minimización:

$$Q/E_0 = {NF}, {F} = {p,q,s}, {r,t}$$

{p,q,s} = C1
{r,t} = C2

Q/E_1 :

	p	q	S
0	C2	C1	C2
1	C1	C1	C1

El conjunto de estados equivalentes de orden 0 $\{p,q,s\}$ se divide en: $\{p,s\}$ y $\{q\}$ $\{p,s\}$ = C3 $\{q\}$ = C4

	r	t
0	C1	C1
1	C1	C1

El conjunto de estados equivalentes de orden 0 $\{r,t\}$ es también equivalente de orden 1 $(r E_1 t)$

$$Q/E_1 = \{p,s\}, \{q\}, \{r,t\}$$

donde
$$\{p,s\} = C3, \{q\} = C4 \text{ y } \{r,t\} = C2$$

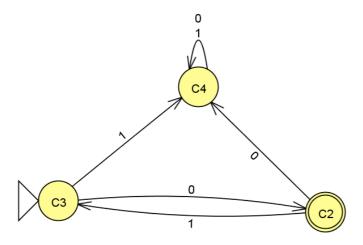
Q/E_2 :

	p	S
0	C2	C2
1	C4	C4

 $p E_2 s$

	r	t
0	C4	C4
1	C3	C3

 $r \, E_2 \, t$


	q
0	C4
1	C4

$$Q/E_2 = \{p,s\}, \{q\}, \{r,t\}$$

Como
$$Q/E_2 = Q/E_1 \rightarrow Q/E = Q/E_2$$

A partir de este conjunto cociente (Q/E) obtenemos el autómata mínimo asociado:

donde f:

