uc3m Universidad Carlos III de Madrid

OPENCOURSEWARE
APRENDIZAJE AUTOMÁTICO PARA EL ANÁLISIS DE DATOS
GRADO EN ESTADÍSTICA Y EMPRESA
Ricardo Aler

APRENDIZAJE EN BIG DATA - MAPREDUCE -

QUE ES BIG DATA

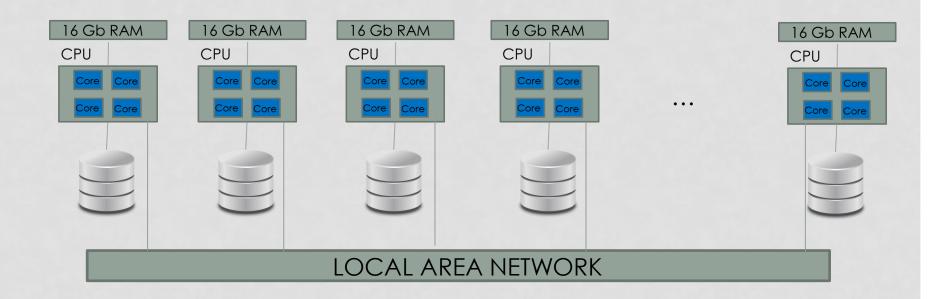
- Tres características principales:
 - Volumen (terabytes, petabytes)
 - 1 petabyte = 1,000 TB, = 1,000,000 Gb
 - Velocidad (tiempo real, streaming, ...)
 - Ej: detección de fraude, áudio, ...
 - Variedad: mezcla de datos: estructurados, noestructurados, texto, sensores, audio, video, click streams, ficheros de log, ...

MOTIVACIÓN

 "comodity hardware" o "granjas de ordenadores": cientos o miles de PCs organizados en racks y con discos duros locales.

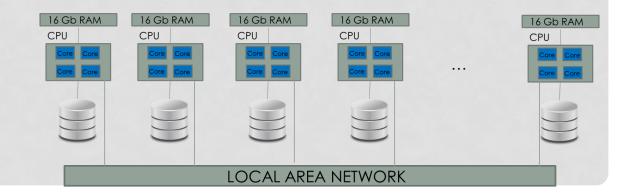
DATA PARALLELISM

· La misma tarea ejecutándose a la vez en datos distintos.



BIG DATA

- Hay que usarlo cuando:
 - El conjunto de datos no cabe en un solo ordenador
 - O se tarda demasiado en procesarlo en un solo ordenador
- Se usa "commodity hardware" (clusters de pc's normales)
- Modelos de programación: Mapreduce (Yahoo), Apache Spark (Databricks), Dryad (Microsoft), Vowpal Wabbit (Microsoft)

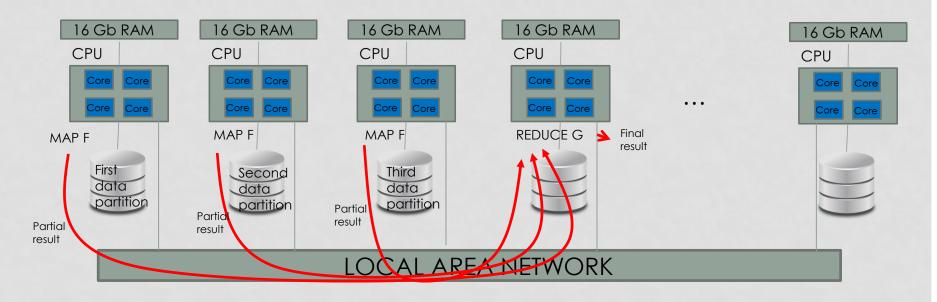


MAP REDUCE

- Modelo de programación para data parallelism / computación distribuida
- Basado en dos operaciones:
 - Map: se ejecuta en paralelo en ordenadores distintos
 - Reduce: combina los resultados producidos por los maps
- El objetivo de este modelo es que las tareas de computación más pesadas (map), ocurran localmente donde están los datos
 - Es decir que se use la red de área local lo menos posible
 - Los resultados producidos por Map son más pequeños y se pueden combinar (reducir) en otros ordenadores.
- Origen: Google 2004 (indices de páginas, etc. Varios petabytes diariamente)
- Se usa en Facebook, LinkedIn, Tuenti, ebay, Yahoo, ...
- Amazon AWS, Microsoft Azure, Google, ... proporcionan Map-Reduce (pagando)

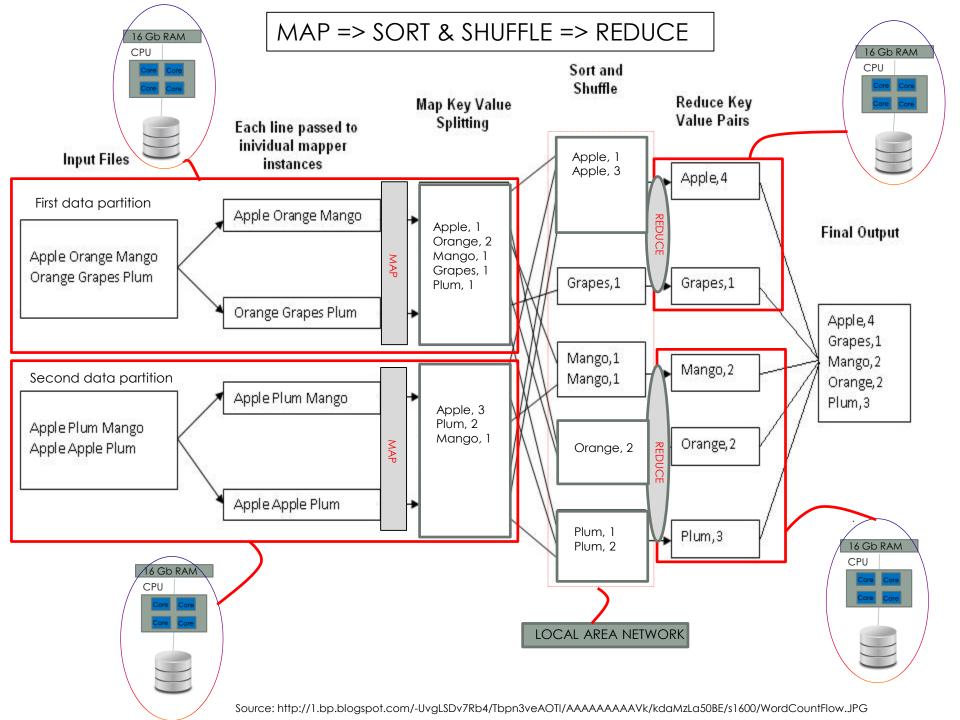
MAP REDUCE DATA PARALLELISM

- Map realizan la parte más pesada de la computación, allí donde los datos residen
- Map genera resultados parciales (de pequeño tamaño) que viajan por la red y son combinados en el reducer generando un resultado final
- Nota: la salida de cada map tiene el formato (key, value) o (clave, valor). En la red puede haber varios reducers, y cada uno procesa los resultados relativos a la misma clave (los resultados se agrupan por clave)



CONTANDO PALABRAS EN MAPREDUCE

- Supongamos que tenemos un gran conjunto de datos en forma de texto (ej: una biblioteca de libros)
- Nuestro objetivo es contar cuántas veces aparece cada palabra en el conjunto de datos:
- 1. El conjunto de datos se divide en diferentes particiones (tantas particiones como discos duros)
- 2. La función map cuenta las palabras en un texto
 - Nota: cada CPU / equipo puede ser capaz de ejecutar varias map en paralelo (multi-core)
- 3. Sort & shuffle: los resultados parciales de los **maps** están agrupados por clave y se envían a los **reduce** en otros ordenadores según dicha clave. Esto lo hace mapreduce automáticamente
- 4. La función reduce suma los conteos parciales de las palabras

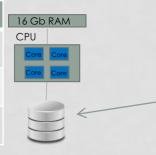


KNN IN MAPREDUCE (K=1)

Anchalia, P. P., & Roy, K. The k-Nearest Neighbor Algorithm Using MapReduce Paradigm.

Dataset distribuido en dos ordenadores (dos partiticiones)

X	Υ	Class
0.5	3	Υ
1	2	Ν
-2	0,5	Ν



p

La instancia a ser clasificada se envía a los dos ordenadores

$$\mathbf{p} = (p_x=1.3, p_y=2.1)$$

Computer 2

Х	Υ	Class
0.9	1	Ν
2	2	Y
-2	1	Ν

p

16 Gb RAM

CPU

Dataset distribuido en dos ordenadores (dos partiticiones)

C	ompute		La instancia a ser clasificada se envía a los		Comput	er 2
X	Y	Class	16 Gb RAM dos ordenadores	X	Y	Class
0.5	3	Y	COTE COTE COTE COTE COTE COTE	0.9	7 1	Ν
1	2	Ν	$\mathbf{p} = (p_x = 1.3, p_y = 2.1)$	2	2	Υ
-2	0,5	Ν	□ p p	-2	1	Ν

- La operación más costosa es el computo de las distancias d(v_i, p), donde v_i es cada una de las instancias en el dataset.
- El cálculo de distancias es lo que **map** hace

```
Map(key = class, value = \mathbf{v}=(x,y)):
return(key = class, value (distance((x,y), (p<sub>x</sub>, p<sub>y</sub>)))
```

Computer

X	Υ	Class
0.5	3	Υ
1	2	Ν
-2	0,5	Ν

$$p = (p_x=1.3, p_y=2.1)$$

¿Qué clase?

Map(key = class, value =
$$\mathbf{v}$$
=(x,y)):
return(key = class, value = (distance((x,y), (p_x, p_y)))

Computer 2

Х	Υ	Class	
0.9	1	Ν	16 Gb RA/
2	2	Υ	
-2	1	Ν	р

map

p

(Y, 1.2)

(N, 0.32)

(N, 3.67)

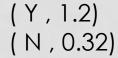
map

(Y, 1.17)

(N, 0.71)

(N, 3.48)

combinación



combinación

Resultados parciales que se envían por la red

Computer 1				
Χ	Υ	Class		
0.5	3	Υ		
1	2	Ν		
-2	0,5	Ν		

$$p = (p_x=1.3, p_y=2.1)$$

¿Qué clase?

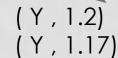
Computer	2

Χ	Υ	Class	
0.9	1	Ν	16 Gb RAM CPU Core Core
2	2	Υ	
-2	ī	Ν	

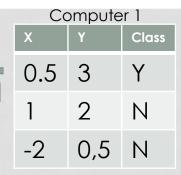
(Y, 1.2) (N, 0.32)

(Y, 1.17) (N, 0.71)

Sort and shuffle (esta agrupación ocurre en la red)



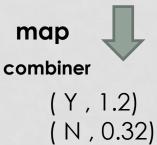
(N, 0.71) (N, 0.32)



$p = (p_x=1.3, p_y=2.1)$
¿Qué clase?

00		'1 '	
X	Υ	Class	
0.9	1	Ν	16 Gb RAM CPU Core Core
2	2	Υ	
-2	1	Ν	

Computer 2



(Y, 1.17) (N, 0.71)

Sort and shuffle

(Y, 1.2) (Y, 1.17)

(N, 0.71) (N, 0.32)

L

Reduce(k=class, $v=(d_1, d_2, ..., d_n)$: return (class, minimum(v))

(Y, 1.17)

min? = 0.32, N

(N, 0.32)

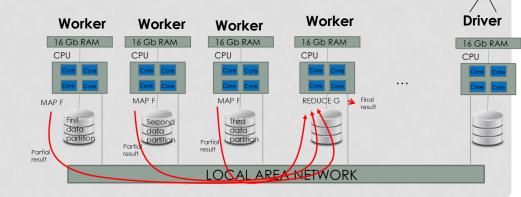
SPARK EN R

MAPREDUCE / HADOOP LIMITATIONS

- Para cada iteración map / reduce, MapReduce tiene que guardar los resultados en disco (replicados, para recuperación de fallos)
- El precio de la memoria RAM ha bajado. Es más rápido guardar los resultados en memoria (en la medida que se pueda)
- Spark usa algunas ideas de MapReduce, pero está orientado a usar más la memoria RAM

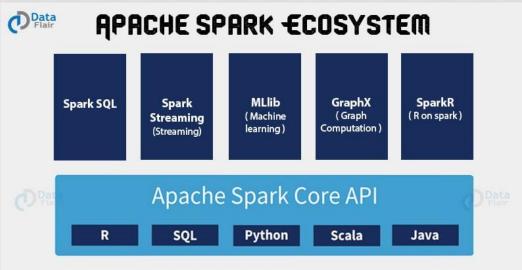
CONCEPTOS BÁSICOS

- Nodo: un ordenador / servidor
 - Worker node: ejecuta tareas Spark (en MapReduce, esas tareas serían Map o Reduce, en Spark es más variado). Dentro de cada worker node hay un programa que se ejecuta en él, llamado Executor (puede haber varios). Es el encargado de ejecutar las tareas.
 - Master Node / cluster manager: ordenador que coordina a los workers.
 - Driver Node: es el ordenador donde corre el programa del usuario (o driver). Accede a Spark a través de SparkContext o SparkSession.
- Usa dataframes distribuidos en dataframes locales en cada una de las particiones (típicamente una partición es un ordenador)
- Las transformaciones sobre el dataframe global (distribuido) se aplican a cada uno de los dataframes locales.



ECOSYSTEMA SPARK

- El lenguaje nativo de Spark es Scala, pero se puede programar en Python (Pyspark) y en R (SparkR)
- Scala es más rápido, pero SparkR permite usar R y sus librerías
- Es necesario decir que el interfaz de R con Spark es el más limitado, de momento



Source: https://d2h0cx97tj ks2p.cloudfront.ne t/blogs/wpcontent/uploads/s ites/2/2017/07/ap ache-sparkecosystemcomponents.jpg

MANERAS DE TRABAJAR EN SPARK DESDE R

Librería sparkR:

- Similar a Scala o Pyspark, aunque menos desarrollado que estos
- http://spark.apache.org/docs/latest/sparkr.html
- Librería sparklyr
 - Desarrollada por Rstudio
 - Más sencilla de manejar, puesto que usa dplyr, pero con dataframes distribuidos spark
 - https://spark.rstudio.com/
- **dplyr:** librería R para manejar data.frames, pero también spark data.frames.