

Universidad Carlos III de Madrid www.uc3m.es

Lesson 8 Advanced topics

Programming

Grade in Industrial Technology Engineering

This work is licensed under a Creative Commons Reconocimiento-NoComercial-Compartirlgual 3.0 España License.

- a. Files
- b. Databases
- 2. Dynamic memory management
- 3. Programs used in Engineering

- a. Files
- b. Databases
- 2. Dynamic memory management
- 3. Programs used in Engineering

Data storage on the hard disk

Permanent storage of program results

Data stored in the main memory of the computer is lost when the program finishes

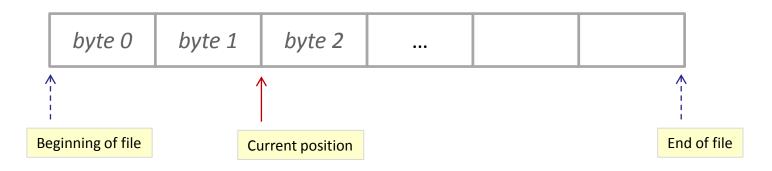
Read data stored in a file, rather than asking the user to introduce it from the keyboard

Data in files with a proper format can be read and assigned to the variables and structures of the program

Dealing with data larger than the memory size

Data is stored in the hard disk, which has larger storage capabilities, and it is processed in parts

a. Files


- b. Databases
- 2. Dynamic memory management
- 3. Programs used in Engineering

File

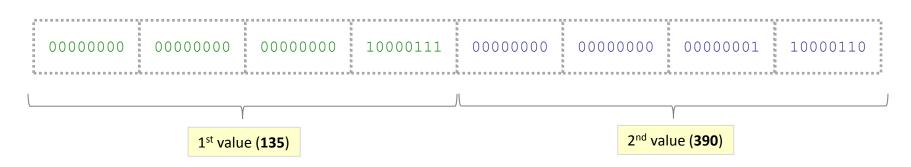
Data stored in a permanent read and write computer peripheral Usually, files are stored on a hard disk

Sequence of bytes Position in the file

C standard library provides functions for the management of *streams*

A stream is an abstract representation of any external source or destination for data –including disk files

Operations


- > Open the file
- > Read from file
- > Write to file
- > Close the file

Binary files

Store a sequence of bits corresponding to the binary representation of data values

E.g.: an integer value is represented with 4 bytes 135 >> 00000000 0000000 00000000 10000111 390 >> 00000000 0000000 0000001 10000110

Text files

Store a sequence of bits corresponding to the textual representation of a data value

00000000	00110001	00000000	00110011	00000000	00110101	00000000	00110011
		1 st valu	o (135))		

Eventually, all files contain just bytes

The difference appears when a file is read, since it is necessary to correctly interpret the bytes

When it is a text file, each two bytes correspond to a character When it is a binary file, it is necessary to know which kind of values were stored and in which order

By default, typical editors assume that files are text files Text files can be created and edited with text editors. If a text file is open with a text editor (e.g., Notepad), its contents can be read by humans Binary files can be created from a C program. If a binary file is open with a text editor (e.g., Notepad), its contents cannot be read by humans

Binary files

Are shorter than text files (with the same data)

It is not necessary to *translate* data from a text-based representation to the internal byte-based representation (this is a time-consuming task, in particular with float and double values)

Text files

Are easy to interpret

Can be edited with external tools

Procedure

> Declare file variable FILE *

> Open file

fopen

Specify mode: binary/text, read/write

> Read data

text: fscanf, fgetc, fgets
binary: fread

> Print data

text: fprintf, fputc, fputs
binary: fwrite

> Close file fclose

1. External data storage Working with files

<stdio.h>

It is also possible to read and write data in a specific position of the file (not necessarily in sequential order)

fseek

```
#include <stdio.h>
ReadWrite.c
                  #define N 10
                 int main(void) {
                     FILE *fi, *fo; // text files
                     FILE *fib, *fob; // binary files
                     int i;
                     int t, bin[1]; // values read from files
                     /* Open files
                                       */
                     fi = fopen("input.txt", "r");
                     fo = fopen("output.txt", "w");
                     fib= fopen("input.dat", "rb");
                     fob= fopen("output.dat", "wb");
                     /* Process values (read and write from files) */
                      for(i=0; i<10; i++) {</pre>
                        // text file
                         fscanf(fi, "%i", &t);
                         t = t * i;
                         fprintf(fo, "%i ", t);
                         // binary file
                         fread(bin, sizeof(int), 1, fib);
                         bin[0] = bin[0] * i;
                         fwrite(bin, sizeof(int), 1, fob);
                      }
                     /* Close files */
                     fclose(fi);
                     fclose(fib);
                     fclose(fo);
                     fclose(fob);
                 }
```


a. Files

- b. Databases
- 2. Dynamic memory management
- 3. Programs used in Engineering

From an abstract perspective, a database is a data storage organized according to a logical structure

Relational databases: data is stored in tables

Record store database

Album table: album id, title, year, group id, song set idGroup table: group id, name, city, number of membersSong set table: song set id, song idSongs table: song id, title, length minutes, length seconds

Database data is stored as files in the hard disk

These files are not directly accessed

A special program is used: the RDBMS (Relational Data Base Management System)

Oracle DBMS, MySQL, etc.

Non-relational databases: documents (MongoDB), graph-based (Neo4j), key-value (Cassandra), etc.

Universidad Carlos III de Madrid www.uc3m.es

Title	Year	Group ID	Song Set ID
The Suburbs	2011	(1)	1
Neon Bible	2004	1	2
Hombre Lobo	2011	2	3
Funeral	2004	1	4
High Violet	2011	3	5
	The Suburbs Neon Bible Hombre Lobo Funeral	The Suburbs2011Neon Bible2004Hombre Lobo2011Funeral2004	The Suburbs20111Neon Bible20041Hombre Lobo20112Funeral20041

Album table

Group table

Group ID	Name	City	# memb.
 (1)	Arcade Fire	Montreal	8
2	Eels	California	1
3	The National	Cincinatti	5

Data is split in tables to avoid redundancies. Pieces of information are linked through **keys**

The RDBMS provides a query language to retrieve data from tables

SQL language (Structure Query Language)

> Retrieve the title and year of all albums by "Arcade Fire"

SELECT

Title, Year FROM Album, Group

WHERE

```
Album.Group_ID=Group.Group_ID AND
Name = "Arcade Fire"
```


- a. Files
- **b.** Databases

2. Dynamic memory management

3. Programs used in Engineering

Dynamic memory management is a set of techniques (supported by C functions) to optimize the amount of memory required by a program

Program to store the record store catalogue May include 30 or 30.000 albums

Easy solution

Declare an array of 30.000 albums Use only the first 'N' elements of the array 30.000 – 'N' are empty >> Memory is wasted!

Good solution

- Dynamic memory allocation and management
- The size of the array is not assigned when it is declared
- The size is assigned only when required, and with only the needed elements
- >> Less memory is used (and only when needed)

Universidad Carlos III de Madrid www.uc3m.es

<stdlib.h>

```
void * malloc(int n_bytes)
void * calloc(int n_elements, int size_element)
```

malloc and calloc

- (1) allocate the amount of memory specified as parameter
- (2) return a pointer to the first position of this memory chunk

The pointer can be used as the first position of an array (remember that pointers and arrays are closely related!)

void * malloc(int n_bytes)

n_bytes: memory size (in bytes) to be allocated The values of the allocated memory cells are unknown (garbage)

void * calloc(int n_elements, int size_element)
n_elements: number of 'elements' of the memory chunk
size_element: size (in bytes) of each 'element' of the memory chunk
The values of the allocated memory cells are set to 0

Allocated memory **must be released** when it is no longer necessary

It is a responsibility of the programmer to pair up conveniently memory allocation and release

> Very powerful feature but also error-prone

<stdlib.h>

void free(void * p)

p is a pointer to the address of a memory chunk allocated with calloc or malloc

#include <stdio.h>

```
#include <stdlib.h>
int main(void) {
  int *a;
  int n, i;
  printf("Array size? ");
  scanf("%i", &n);
  // allocate memory for new array a
   a = (int *) malloc(n * sizeof(int));
  // assign values to array elements
  for(i=0; i<n; i++) {</pre>
     a[i] = i;
     printf("%i ", a[i]);
   }
  printf("\n");
  // release memory
  free(a);
  a = NULL; // <-- make sure that a is no longer used
  // end program
  system("pause");
  return 0;
}
```


- a. Files
- **b.** Databases
- 2. Dynamic memory management

3. Programs used in Engineering

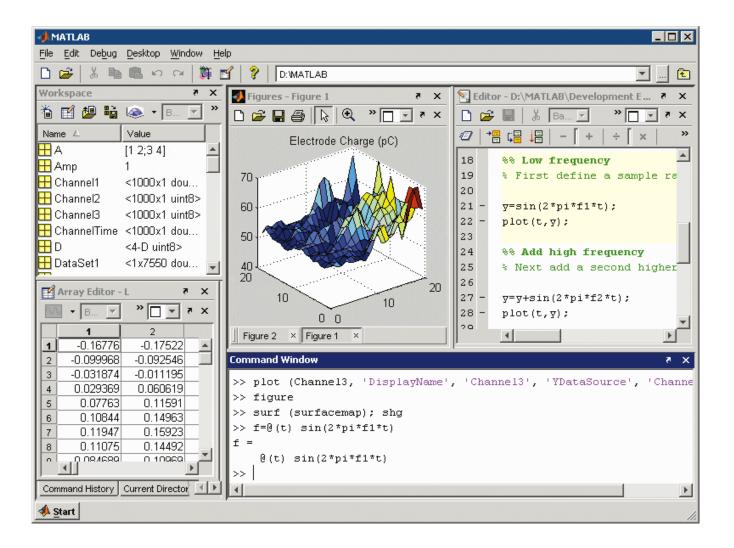
Engineering tasks are supported by computer software

Engineering software

- Matlab
- Computer Aided Design (CAD)
 Computer Aided Manufacturing (CAM)
- Design, calculus, and simulation software

Office tools

As in any other professional activity



Universidad

www.uc3m.es

Carlos III de Madrid

3. Programs used in Engineering Matlab

MATLAB[®] is a high-level technical computing language and interactive environment for algorithm development, data visualization, data analysis, and numeric computation

High-level language for technical computing

Development environment for managing code, files, and data

Interactive tools for iterative exploration, design, and problem solving

Mathematical functions for linear algebra, statistics, Fourier analysis, filtering, optimization, and numerical integration

2-D and 3-D graphics functions for visualizing data

Tools for building custom graphical user interfaces

Functions for integrating MATLAB based algorithms with external applications and languages, such as C, C++, Fortran, Java, COM, and Microsoft Excel

http://www.mathworks.com/products/matlab/

Computer Aided Design

Tools to support design and documentation process

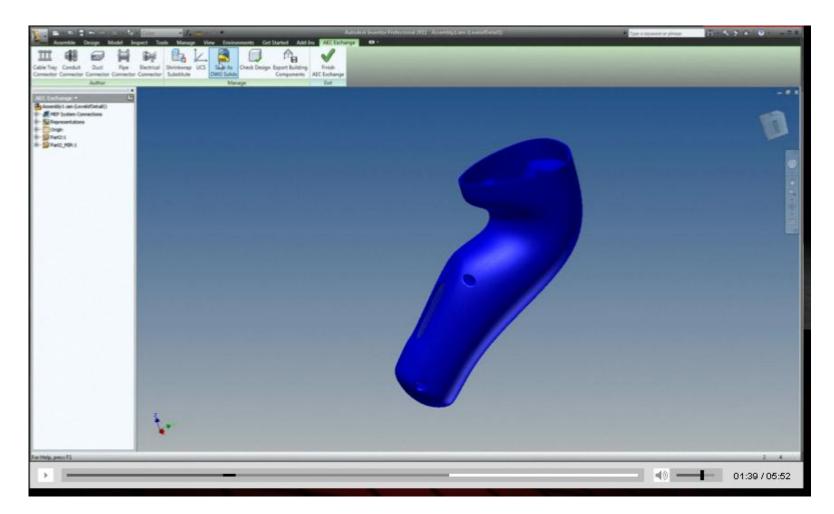
The result of the CAD process is a design ready to be printed or manufactured

Graphical information, materials, process, dimensions, tolerances, etc.

Advantages

Optimization of the design process Advanced functionalities not available in traditional procedures: rotations, simulation, etc.

2D and 3D tools


2-dimension graphics: vector graphics (points, lines, arcs, polygons, etc.)

3-dimension graphics: solids, surfaces, etc.

Universidad Carlos III de Madrid www.uc3m.es

3. Programs used in Engineering AutoCAD®

http://adskmedia.com/conceptual-design/

Specific software programs to support different Engineering tasks

Industrial Organization

Project management

Manufacturing management

Simulation and optimization of logistics and production process

E.g.: *Witness* environment used in *Quantitative Organization Methods*

Logistics management

Production and logistics systems

Materials

Simulation of polymeric fluids behavior in injection molding

E.g.: *Moldflow* used in *Polymer Technologies*

Electrical installations

Analysis and simulation of electric systems

E.g.: *PSE/E Power System Simulator for Engineering* used in *Electrical Grids and Circuits*

Planning of electricity distribution networks

Production and logistics systems

Energy Technologies

Fluid dynamics calculus and simulation

E.g.: FLUENT 6.2 used in Computer-aided simulation of industrial flows

Robotics and automation

Robot programming (E.g.: *RAPID*)

Integration of instrumentation systems (E.g.: LabView)

3D modeling, simulation and animation of physical systems (E.g.: *Roboworks*)

Basic

- Files
 - Ivor Horton. Beginning C: From Novice to Professional. Apress, 2006 (4th Edition) Chapter <u>12</u>
 - Stephen Prata. *C Primer Plus.* Sams, 2004 (5th Edition) Chapter <u>13</u>
- Dynamic memory management
 - Ivor Horton. Beginning C: From Novice to Professional. Apress, 2006 (4th Edition) Chapter <u>7.4</u> (Using memory as you go)
 - Stephen Prata. C Primer Plus. Sams, 2004 (5th Edition) Chapter <u>12.6</u> (Allocated Memory)

Additional information

 Stephen G. Kochan. Programming in C. Sams, 2004 (3rd Edition), Programming in C – Chapter <u>16</u> (Input and Output Operations in C), <u>17</u> (Miscellaneous and Advanced Features)

- a. Files
- b. Databases
- 2. Dynamic memory management
- 3. Programs used in Engineering