
jgromero@inf.uc3m.es

Lesson 5
Complex Data Types

Programming
Grade in Industrial Technology Engineering

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0 España License.

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES

jgromero@inf.uc3m.es

Outline

1. Introduction

2. Arrays: definition and use

3. Arrays and pointers

4. Character strings

5. Structures: definition and use

2

jgromero@inf.uc3m.es

Outline

1. Introduction

2. Arrays: definition and use

3. Arrays and pointers

4. Character strings

5. Structures: definition and use

3

jgromero@inf.uc3m.es

1. Introduction

Basic data types (Lesson 3)
Single “cell”
Store a single value
Types:

Numerical: integer, real, etc.
Characters
Pointers

Complex data types

Several “cells”
Internal structure
Types:

Arrays (vectors, matrices)

Character strings
Structures (sometimes [wrongly] called registers)

Complex data types vs Basic data types

4

jgromero@inf.uc3m.es

Outline

1. Introduction

2. Arrays: definition and use

3. Arrays and pointers

4. Character strings

5. Structures: definition and use

5

jgromero@inf.uc3m.es

2. Arrays: definition and use

Data structure to store the mean temperature of Madrid of each
month of the year

temperature[2] = 9;

One dimension (vector)

6.2 6.5 9.0 10.7 1.0

1 2 3 11 0

float temperature[12]

Example

Array name: temperature

Array size: 12

Type of the elements of the array (float)

Same identifier: temperature

Each element has a different value

Each element is identified with and index: [0], [1], …, [11]

E.g.: Assign March temperature (third month)

Beware!
Elements
start counting
at position 0

6

jgromero@inf.uc3m.es

2. Arrays: definition and use

Collection of elements of the same type named
with the same global identifier

Individual elements of the array are accessed with
an index that identifies the position of the array
The index is ALWAYS an integer expression

Multiple-dimension arrays
One-dimension array: vector or list

Two-dimension array: matrix
Table of n rows and m columns

Definition

7

jgromero@inf.uc3m.es

2. Arrays: definition and use

Data structure to store the mean temperature of Madrid of each
day of the year 2010

One dimension (vector)

6.2 6.5 9.0 10.7 1.0

1 2 3 364 0

float temperature[365]

Example

Beware!
Accessing elements outside the
legal range of the array index
results in unexpected results
(usually, a runtime error)

8

jgromero@inf.uc3m.es

2. Arrays: definition and use

Data structure to store the mean temperature of Madrid, Barcelona, Seville,
and Valencia of each month of the year

Example

temperature_cities[2][1] = 14.3;

Two dimensions (matrix)

1 2 3 11 0

temperature_cities[4][12]

6.2 6.5 9.0 10.7 1.0

12.1 10.4 17.0 18.1 13.4

18.1 20.1 24.7 26.4 12.1

16.1 17.8 18.1 20.2 15.5

0

1

2

3

Row Column

Each element is identified with two indexes

 [0][0], [0][1], …, [0][11]
 [1][0], [1][1], …, [1][11]
 …
 [3][0], [3][1], …, [3][11]

E.g.: Assign February temperature of Seville (third city, second month)

9

jgromero@inf.uc3m.es

Position

 Row
Room

lab[1][2][0] = 2525;

lab[2][3][3] = 3838;

lab[0][1][1] = 1022;

Data structure to store information about the occupation of the computers of
the faculty (NIA of the student)

2. Arrays: definition and use

Room Row Position

Example

int lab[3][4][5]

0 0 0 0 0

0 O O O O

0 O O O 0

0 0 0 3838 0

1

2

0
0 1 2 3 4

0

1

2

3

 0 0 0 0 0

0 0 0 0 0

2525 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1022 O O O

0 O O O 0

0 0 0 0 0

10

jgromero@inf.uc3m.es

2. Arrays: definition and use

To declare an array, we have to specify:

data type

name

number of dimensions

number of elements per dimension

This is information is required by the compiler to automatically
allocate memory for the array:

n “variables” of the selected type are created

and stored in consecutive address

Declaration

11

jgromero@inf.uc3m.es

2. Arrays: definition and use

Declaration of a one-dimension array
<data type> <array name> [<size>] [= <init>];

(size is an integer LITERAL, usually previously defined with #define)
[NOTE: size can be a variable in C99, but we will not use this feature]

Data type can be any C data type

Examples:

// usual array declaration

float temperature[365];

int num[10];

char vowels[5] = {'a', 'e', 'i', 'o', 'u'};

// declaration + initialization (size is not required!)

int countdown[] = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0};

Declaration

12

jgromero@inf.uc3m.es

2. Arrays: definition and use

Declaration of a multiple-dimension array
<data type> <array name> [size][size]…[size];

(size is an integer LITERAL, usually previously defined with #define)
First size value is optional if the array is initialized in the declaration

Examples:
Two-dimension array to store a 800x600 image (grayscale)

int image[600][800];

Three-dimension array to store information about the occupation of
the computer labs in the faculty

int lab[20][15][10];

A two-dimension array can be regarded as a one-dimension vector
whose elements are vectors

(This idea is extensive to more dimensions)

Declaration

13

jgromero@inf.uc3m.es

2. Arrays: definition and use

Value assignment
Elements are identified with the corresponding index

temperature[2] = 9;

temperature_cities[2][1] = 14.3;

image[0][5] = 225;

lab[1][4][2] = 1000123;

Only one value can be assigned to an element of the array

Assigning a value to all the elements of the array is not
allowed

image = 0; WRONG

Use

14

jgromero@inf.uc3m.es

2. Arrays: definition and use

Initialization
It is possible to initialize an array along with its declaration

Similar to basic data types

One-dimension arrays
Defining the size of the array

int numbers[6] = {4, 8, 15, 16, 23, 42};

Without defining the size of the array
int numbers[] = {4, 8, 15, 16, 23, 42};

Multiple-dimension arrays
Size must be defined (first dimension size can be omitted)

Each dimension sub-array is enclosed with {}
int matrix[2][3] = {

 {4, 8, 15} ,

 {16, 23, 42}

};

Use

15

jgromero@inf.uc3m.es

2. Arrays: definition and use

Array indexing with expressions
Element values can be accessed by using the proper indexes

int a;

a = (numbers[0] + numbers[1]) / 2;

Any integer expression can be used as index
 int i = 1, j = 2;

float t = temperature_cities[i*2 + 1][j];

temperature_cities[i][j+1] = 13.3;

It is very common to use loops to access to the
elements of an array

int i=0;

for(i=0; i<6; i++)

 printf("Value at position %i is %i \n", i, numbers[i]);

Use

16

jgromero@inf.uc3m.es

2. Arrays: definition and use

If we access to a position of an array that has
not been allocated, we get a runtime error

Use

17

ERROR: Trying to access to position 6 of an
array of 6 positions (indexes start from 0)

OK: Index ‘i’ takes values from 0 to 5

ERROR: Index ‘i’ takes values from 0 to 6

jgromero@inf.uc3m.es

2. Arrays: definition and use

Complete arrays cannot be directly assigned

Compilation error

Complete arrays cannot be directly compared

The addresses of the first elements are compared

Complete arrays cannot be directly printed

The address of the first element is printed

In general, array data must be processed
element by element

Use

18

jgromero@inf.uc3m.es

2. Arrays: definition and use

Array values must be read one-by-one

Reading all the values of an array

Reading values

19

jgromero@inf.uc3m.es

2. Arrays: definition and use

Array values must be printed one-by-one

Printing all the values of an array

Printing values

20

jgromero@inf.uc3m.es

2. Arrays: definition and use

How can we compare two one-dimension arrays
a and b?

How can we copy a one-dimension array a into
another one-dimension array b?

Array comparison and copy

21

jgromero@inf.uc3m.es

2. Arrays: definition and use

Array elements are stored in consecutive cells of the memory

One-dimension arrays: elements have consecutive addresses

Two-dimension arrays: Row major (the first row is stored, the second row is
stored, etc.)

Three-dimension arrays: the first “page” is stored, the second page is stored,
etc.

Storage of array values in memory

22

a00 a01 a02

a10 a11 a12

a20 a21 a22

a00
a01
a02
a10
a11
a12
a20
a21
a22

a000 a010 a020

a100 a110 a120

a200 a210 a220

a001 a011 a021

a101 a111 a121

a201 a211 a221

jgromero@inf.uc3m.es

Outline

1. Introduction

2. Arrays: definition and use

3. Arrays and pointers

4. Character strings

5. Structures: definition and use

23

jgromero@inf.uc3m.es

3. Arrays and pointers

Arrays and pointers are very closely related

The name of an array is the address of the memory
cell that stores the first element of the array

The elements of an array can be accessed with
pointer operators from the first address

Let us assume the array definition:

 int list[6] = {10, 7, 4, -2, 30, 6};

Relation

24

jgromero@inf.uc3m.es

3. Arrays and pointers
Example

25

10

 0 1 2 3 4 5

M
em

o
ry

 lista *(lista+1) *(lista+2) *(lista+3) *(lista+4) *(lista+5)

7 4 -2 30 6 ? ?

M
e

m
o

ry

ad
d

re
ss

 1500 1502 1504 1506 1508 1510

Assuming 2 bytes per integer (sizeof(int) == 2)

jgromero@inf.uc3m.es

3. Arrays and pointers
Example

26

10

list[0] list[1] list[2] list[3] list[4] list[5]

M
em

o
ry

 lista *(lista+1) *(lista+2) *(lista+3) *(lista+4) *(lista+5)

7 4 -2 30 6 ? ?

M
e

m
o

ry

ad
d

re
ss

 1500 1502 1504 1506 1508 1510

Array elements can be accessed in two different ways:
A. Index-based access
B. Address-based access

*list *(list+1) *(list+2) *(list+3) *(list+4) *(list+5)

jgromero@inf.uc3m.es

3. Arrays and pointers
Example

27

10

list[0] list[1] list[2] list[3] list[4] list[5]

M
em

o
ry

 lista *(lista+1) *(lista+2) *(lista+3) *(lista+4) *(lista+5)

7 4 -2 30 6 ? ?

M
e

m
o

ry

ad
d

re
ss

 1500 1502 1504 1506 1508 1510

A. Index-based access

int x = list[1]; /* x = 7 */

int y = list[0]; /* y = 10 */

*list *(list+1) *(list+2) *(list+3) *(list+4) *(list+5)

jgromero@inf.uc3m.es

3. Arrays and pointers
Example

28

10

list[0] list[1] list[2] list[3] list[4] list[5]

M
em

o
ry

 lista *(lista+1) *(lista+2) *(lista+3) *(lista+4) *(lista+5)

7 4 -2 30 6 ? ?

M
e

m
o

ry

ad
d

re
ss

 1500 1502 1504 1506 1508 1510

B. Address-based access

int x = *(list+1); /* x = 7 */

int * p1 = &list[0]; /* p1 = 1500 (&list[0] is the same as list) */

int * p2 = list; /* p2 = 1500 */

*list *(list+1) *(list+2) *(list+3) *(list+4) *(list+5)

list+1 is 1502! Pointer arithmetic
Adding 1 to list means "point to the next value of the type of the pointer list"
The compiler automatically calculates the offset, which is 2 (assuming 2 bytes per int)

 list list+1 list+2 list+3 list+4 list+5

jgromero@inf.uc3m.es

3. Arrays and pointers
Example

29

10

list[0] list[1] list[2] list[3] list[4] list[5]

M
em

o
ry

 lista *(lista+1) *(lista+2) *(lista+3) *(lista+4) *(lista+5)

7 4 -2 30 6 ? ?

M
e

m
o

ry

ad
d

re
ss

 1500 1502 1504 1506 1508 1510

B. Address-based access

int * p4 = &list[3]; /* p4 = 1506 */

int * p5 = list + 3; /* p5 = 1506 */

int z = *(p5+1); /* z = 30 */

int w = (*p5)+2; /* w = 0 */

*list *(list+1) *(list+2) *(list+3) *(list+4) *(list+5)

jgromero@inf.uc3m.es

Outline

1. Introduction

2. Arrays: definition and use

3. Arrays and pointers

4. Character strings

5. Structures: definition and use

30

jgromero@inf.uc3m.es

4. Character strings

A string literal is a sequence of characters
delimited by double quotation marks

"Hello world!"

Blank spaces may appear

Escape sequences can be used (preceded by \)
\n : new line

\" : quotation mark character

String literals

31

jgromero@inf.uc3m.es

4. Character strings

A string variable is a one-dimension array of char with some particular
properties:

Strings contain meaningful text (name, phrase, etc.)

There is a null character at the end of the string

The null character is '\0' (ASCII code 0)

Therefore, the length of an array that stores a string is (at least) the number of characters of the
string plus one

E.g.: to store "table" string, 6 bytes are required –an array of size 6 or larger must be used to
store "table\0"

Nevertheless, to store "table" as a plain array of characters, only 5 bytes are required

The null character marks the end of the useful text in the string

It is automatically when added when a string is initialized or read

char city[] = "Madrid"; // M | a | d | r | i | d | \0
char city[9] = "Madrid"; // M | a | d | r | i | d | \0 | ? | ?

The characters of the string are stored in the first six elements of the array

The seventh element stores the ‘\0’

Strings have special functions to be managed as a whole: read, write, etc.

String variables

32

jgromero@inf.uc3m.es

4. Character strings

C mixes regular character arrays and strings of
characters:

Normal array of characters
char a[5]; // No initialization

char a[5] = {'h', 'e', 'l', 'l', 'o'}; // element-by-element init.

char a[] = {'h', 'e', 'l', 'l', 'o'}; // element-by-element init.
 // without size

String of characters
Size is specified: enough room for all characters must be available

char a[6] = "hello"; // \0 is automatically added

char a[6] = "hello\0"; // Explicitly adding \0 is not necessary

char a[5] = "hello"; // Wrong! Unexpected result

char a[6] = {'h', 'e', 'l', 'l', 'o', '\0'};

Size is not specified: room is automatically allocated for elements + \0

char a[] = "hello"; // 6 elements, since \0 is automatically added

char a[] = {'h', 'e', 'l', 'l', 'o', '\0'};

Declaration

33

jgromero@inf.uc3m.es

4. Character strings
Character strings and character arrays

strings.c

34

jgromero@inf.uc3m.es

4. Character strings

Complete string assignment can be only
performed in the declaration of the string

char str[] = "hello"; ✔
str = "goodbye"; ✗

Element-by-element assignment can be
performed

Use

35

The size of the array is different
from the length of the string!

jgromero@inf.uc3m.es

4. Character strings

printf and scanf
Use the string format specifier %s

In the call to scanf, the '&' operator is not used
The name of the string is already a pointer

scanf with %s ends reading when a blank space is found

Use scanf("%[^\n]", s) to read until the end of line

Other functions (unsafe, not recommended)

gets(char [] str): reads a string until '\n' is found into str
'\n' is not included in str

puts(char [] str): prints the string str

Reading and writing

36

jgromero@inf.uc3m.es

4. Character strings

String copy
strcpy(char dest[], char src[])

Function included in <string.h>
Copies the string src into the string dest
The destination string must be large enough to store all the
characters of the source

Other operations

37

jgromero@inf.uc3m.es

4. Character strings

<string.h>

Comparison

int strcmp(char str1[], char str2[])
Returns:
 0 if str1 is equal to str2
 1 if str1 is greater than str2
 -1 if str1 is less than str2

Joining
char [] strcat(char str1[], char str2[])

Modifies str1 by appending str2 at the end
Returns str1 (modified)

Length
int strlen(char str[])

Returns the number of valid characters in str, excluding \0

Finding
char * strchr(char str1[], char c)

Finds c in str1
Returns the address of the first occurrence of c in str1 (NULL if not found)

char * strstr(char str1[], char str2[])
Finds str2 in str1
Returns the address of the starting occurrence of str2 in str1

Other operations

38

jgromero@inf.uc3m.es

4. Character strings

The relation between pointers and strings is the
same as for pointers and regular arrays

The name of the string is the address of the first
element

char array[] = "car";

char *p_array = array;

Relation between pointers and strings

39

array [0]

array [1]

array [2]

array [3]

array

pArray

array [0]=‘c’

array [1]=‘a’

array [2]=‘r’

array [3]=‘\0’

jgromero@inf.uc3m.es

Bibliography

Basic

• Stephen G. Kochan. Programming in C. Sams, 2004 (3rd
Edition), Programming in C – Chapter 7

• Ivor Horton. Beginning C: From Novice to Professional. Apress,
2006 (4th Edition) – Chapter 5, Chapter 6 (sections 1, 2, 3, 4)

Additional information
• Ivor Horton. Beginning C: From Novice to Professional. Apress, 2006 (4th

Edition) – Chapter 7 (sections 1, 2, 3)

• Stephen G. Kochan. Programming in C. Sams, 2004 (3rd Edition),
Programming in C – Chapter 10 (all but section 5 on Character Strings,
Structures, and Arrays)

Recommended lectures

40

http://proquest.safaribooksonline.com/book/programming/c/9780768689068/working-with-arrays/95
http://proquest.safaribooksonline.com/book/programming/c/9781590597354/arrays/175
http://proquest.safaribooksonline.com/book/programming/c/9781590597354/applications-with-strings-and-text/203
http://proquest.safaribooksonline.com/book/programming/c/9781590597354/applications-with-strings-and-text/205
http://proquest.safaribooksonline.com/book/programming/c/9781590597354/applications-with-strings-and-text/208
http://proquest.safaribooksonline.com/book/programming/c/9781590597354/applications-with-strings-and-text/212
http://proquest.safaribooksonline.com/book/programming/c/9781590597354/pointers/241
http://proquest.safaribooksonline.com/book/programming/c/9781590597354/pointers/251
http://proquest.safaribooksonline.com/book/programming/c/9781590597354/pointers/255
http://proquest.safaribooksonline.com/book/programming/c/9780768689068/character-strings/195

jgromero@inf.uc3m.es

Outline

1. Introduction

2. Arrays: definition and use

3. Arrays and pointers

4. Character strings

5. Structures: definition and use

41

jgromero@inf.uc3m.es

5. Structures: definition and use

A structure is a collection of one or more variables, possibly of
different types, grouped together under a single name for
convenient handling. (Kernighan & Ritchie, The C Programming
Language)

Structures help to organize complicated data, particularly in
large programs, because they permit a group of related
variables to be treated as a unit instead of as separate
entities.

Examples:

Entry of an address book 3D point
Name x coordinate
Surname y coordinate
Phone number z coordinate
E-mail

Definition

42

jgromero@inf.uc3m.es

5. Structures: definition and use

The components of a structure are named members or
fields

The members of the AddressBookEntry structure are name,
surname, phone and email

The members of the Point3D structure are x, y, z

Structure members are accessed by using their name –
instead of the index, which is used only for arrays

Structures can be used as a whole or by accessing to
the individual members

Structures are sometimes called registers, but this name must be
avoided

Definition

43

jgromero@inf.uc3m.es

5. Structures: definition and use

Syntax
struct <structure_name> {

 <type> <member>;

 <type> <member>;

 …

 <type> <member>;

};

The struct definition is placed out of the main method

Example

struct Point3D {

 float x;

 float y;

 float z;

};

Structure declaration

44

jgromero@inf.uc3m.es

5. Structures: definition and use

A structure declaration creates a new data type. It is a template
for new data, rather than memory allocation to store data

New variables of the structured type can be declared and used

A Point3D variable can be declared

Syntax

struct <structure_name> <variable_name>;

Example
struct Point3D p1;

(p1 is a new variable of the structured type Point3D)

Structure variable declaration

45

jgromero@inf.uc3m.es

5. Structures: definition and use

To access to the members of a structure variable,
the point operator (.) is used

To access to the coordinate x of the Point3D p1 we
use the syntax:
 p1.x

p1 is the name of the structure variable
. is the member access operator
x is the name of the member of the structure

Similarly
 p1.y

 p1.z

Accessing structure members

46

jgromero@inf.uc3m.es

5. Structures: definition and use

Values for the members of a structure can be
assigned directly in the declaration, by structure
assignment, or by member-to-member
assignment.

1. Declaration and initialization of structures
Values are directly assigned

struct Point3D point1 = {2.1, 3.4, 9.8};

[Using compound literals is also possible in other parts of the code, but this is not
studied in this course.]

Initialization, assignment and copy of structures

47

jgromero@inf.uc3m.es

5. Structures: definition and use

2. Structure assignment
A copy of the structure is created

struct Point3D point2;

point2 = point1;

3. Individual member assignment
A copy of the member is assigned

struct Point3D point3 = {1.1, 2.3, -1.4};

struct Point3D point4;

point4.x = point3.x;

point4.y = point3.y;

point4.z = point3.z;

Initialization, assignment and copy of structures

48

jgromero@inf.uc3m.es

5. Structures: definition and use
Example

49

distance between pA and pB?

(See:. Point3DExample.c)

jgromero@inf.uc3m.es

5. Structures: definition and use

An array of structures stores a list of entities

Different from an array inside a structure!

Syntax
struct <structure_name> <array_name>[<size>];

The entities of the array are grouped together and can
be accessed with indexes as any other array element

Array of structures

50

5. Structures: definition and use

51

x y

points[0]

points[1]

points[2]

struct Point2D {
 float x;
 float y;
};

int main(void) {

 /* Declare array of structure Point2D */
 struct Point2D points[3];

 /* Access to array structure members */
 points[0].x = 1.0;
 points[0].y = 2.1;

 points[1].x = 3.1;
 points[1].y = 4.5;

 points[2].x = 5.0;
 points[2].y = 4.1;

1.0 2.1

x y

3.1 4.5

5.0 4.1

points[0]

points[1]

points[2]

x y

jgromero@inf.uc3m.es

5. Structures: definition and use

The members of a structure can be basic or complex data types:

integer, character, pointer…
array, structure

Example

Entry of an address book (arrays inside a structure)

struct AddressBookEntry {

 char name[256];

 char surname[256];

 char email[256];

 int phone[4];

};

Complex structure members

52

jgromero@inf.uc3m.es

5. Structures: definition and use

Example (structures inside a structure, array of structures inside a structure)

struct Point2D {
 float x;
 float y;
};

struct Triangle {
 struct Point2D a;
 struct Point2D b;
 struct Point2D c;
};

struct Dodecahedron {
 struct Point2D points[12];
};

To access to nested members, the point operator is used
several times. If arrays are involved, brackets must be used

Complex structure members

53

/* Structure */
struct Point2D {
 float x;
 float y;
};

/* Structure with nested structure*/
struct Triangle {
 struct Point2D a;
 struct Point2D b;
 struct Point2D c;
};

/* Structure with nested array of structures */
struct Dodecahedron {
 struct Point2D points[12];
};

5. Structures: definition and use

x y

x y
a

x y
b

x y
c

(See: Shapes1.c, Shapes2.c)

x y x y

points[0] points[1]

…
x y

points[11]

54

jgromero@inf.uc3m.es

5. Structures: definition and use

int main(void) {

…

struct Triangle tri;

…

/* Create triangle with vertex: (0, 0) */

tri.a.x = 0;

tri.a.y = 0;

Complex structure members

55

tri

0 0

x y
a

x y
b

x y
c

5. Structures: definition and use

56

 /* Declare array of complex structure Triangle */
 struct Triangle triangles[2];

 triangles[0].a.x = 1.2;
 triangles[0].a.y = 2.4;
 triangles[0].b.x = 3.7;
 triangles[0].b.y = 4.9;
 triangles[0].c.x = 7.4;
 triangles[0].c.y = 1.8;

 struct Point2D p1 = {1.0, 2.1};
 struct Point2D p2 = {3.1, 4.5};
 struct Point2D p3 = {5.0, 4.1};

 triangles[1].a = p1;
 triangles[1].b = p2;
 triangles[1].c = p3;

1.2 2.4

x y

a

3.7 4.9

x y

b

7.4 1.8

x y

c

1.0 2.1 3.1 4.5 5.0 4.1

a b c

triangles[0]

triangles[1]

1.0 2.1

x y

p1 p2, p3

jgromero@inf.uc3m.es

5. Structures: definition and use

/* Structure with nested structure*/

struct Dodecahedron {

 struct Point2D points[12];

};

int main(void) {

…

struct Dodecahedron dod;

…

/* Assign point 3 of dodecahedron */

dod.points[3].x = 1;

dod.points[3].y = 1;

Complex structure members

points[3]

x y

points[0]

x y

points[1]

x y

points[2]

…

dod

1 1

x y

57

jgromero@inf.uc3m.es

5. Structures: definition and use

Pointers to structures can be declared and used

Syntax
struct <structure_name> *<pointer_name>;

Example
struct Point2D *pp;

pp = &p1; // p1 has been declared as struct Point2D p1

Pointers allow access to the structure members with the
arrow (->) operator

Example
printf("\nPoint 1: (%f, %f)", pp->x, pp->y);

Pointers to structures

58

jgromero@inf.uc3m.es

Bibliography

Basic

• Stephen G. Kochan. Programming in C. Sams, 2004 (3rd
Edition), Programming in C – Chapter 9
– Skip Functions and Structures section until next lesson

– Notice that some examples use functions

Additional information
• Ivor Horton. Beginning C: From Novice to Professional. Apress, 2006 (4th

Edition) – Chapter 11

• Stephen Prata. C Primer Plus. Sams, 2004 (5th Edition) – Chapter 14 (until
Structures: What Next?)

Recommended lectures

59

http://proquest.safaribooksonline.com/book/programming/c/9780768689068/working-with-structures/165
http://proquest.safaribooksonline.com/book/programming/c/9781590597354/structuring-data/409
http://proquest.safaribooksonline.com/book/programming/c/0672326965/structures-and-other-data-forms/ch14

jgromero@inf.uc3m.es

Outline

1. Introduction

2. Arrays: definition and use

3. Arrays and pointers

4. Character strings

5. Structures: definition and use

60

