
jgromero@inf.uc3m.es

Lesson 3
Introduction to Programming in C

Programming
Grade in Industrial Technology Engineering

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0 España License.

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES

Outline

1. Introduction to the C programming language

2. Basic program structure

3. Variables and constants

4. Simple data types

5. Expressions and instructions

6. Operators

7. Pointers

8. Basic input/output: printf and scanf

2

Outline

1. Introduction to the C programming language

2. Basic program structure

3. Variables and constants

4. Simple data types

5. Expressions and instructions

6. Operators

7. Pointers

8. Basic input/output: printf and scanf

3

1. Introduction to the C programming language

C is closely related to the development of the UNIX operating system at
AT&T Bell Labs

1968-1971

First versions of UNIX
Towards a better programming language: B, NB

1971-1972

C is created (K. Thompson)

UNIX is rewritten in C; versions of C are developed for other platforms (Honeywell 635, IBM 360/370)

1978

Kernighan and Ritchie

Publication of “The C programming language”

Johnson

Development of pcc (C compiler)

1989
C becomes standard (ISO/IEC 9899-1990)

New languages have been developed from C: Objective C, C++, C#, etc.

History of C

4

1. Introduction to the C programming language

Different compilers, development platforms and language derivations
may lead to C code targeted to a specific machine

E.g.: Win32 graphic libraries

“Unambiguous and machine-independent definition of the language C”

A program in ANSI C must be compiled by any C compiler and must work in
any platform

ANSI C is a standard subset of the language:

Well-defined syntax
Restricted set of functions

Several specifications

C89/C90

C99
C11

ANSI C

5

1. Introduction to the C programming language

• Program: Set of orders (instructions or sentences) written in a
programming language that are provided to the computer to develop a
task.

• High-level programming languages:

– Source code must be converted into machine code
• Compilation

– In C, there are two steps:
• Compilation

• Linking

Programs

Problem Algorithm Program

C Programming Language

6

1. Introduction to the C programming language
Compilation + Linking process

Low-level
Languages

C

 Compiler

Source code
Object
code

Executable

Linker

High-level
languages

Object
code

Object
code

Low-level
languages

Machine
language

7

1. Introduction to the C programming language

Development environments

Dev C/C++ (integrated MinGW 3.4.2 compiler)

http://www.bloodshed.net/dev/devcpp.html
(Download)

Orwell Dev C++ (integrated MinGW 4.7.0 compiler, portable version)

http://orwelldevcpp.blogspot.com.es/
(Download)

code::blocks (integrated MinGW compiler)

http://www.codeblocks.org/downloads/26
(Download)

Eclipse IDE for C/C++ developers (no integrated compiler)

http://www.eclipse.org/cdt/
(Download)

XCode (integrated LLVM compiler)

https://developer.apple.com/xcode/
(download from Mac App Store)

First C program

8

http://www.bloodshed.net/dev/devcpp.html
http://sourceforge.net/projects/dev-cpp/files/Binaries/Dev-C++ 4.9.9.2/devcpp-4.9.9.2_setup.exe/download
http://orwelldevcpp.blogspot.com.es/
http://orwelldevcpp.blogspot.com.es/
http://sourceforge.net/projects/orwelldevcpp/files/Setup Releases/Dev-Cpp 5.3.0.4 MinGW 4.7.0 Setup.exe/download
http://www.codeblocks.org/downloads/26
http://download.berlios.de/codeblocks/codeblocks-10.05mingw-setup.exe
http://www.eclipse.org/cdt/
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/helios/SR1/eclipse-cpp-helios-SR1-win32-x86_64.zip
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

1. Introduction to the C programming language
First C program

9

1. Introduction to the C programming language

A programming language is characterized by:

Alphabet

Allowed characters

Lexicon

Words

Syntax

Rules for word combination to make meaningful programs

Programming languages

10

1. Introduction to the C programming language

C alphabet
Symbols that can appear in a C program

Letters
All but ‘ñ’ and accents (only in comments!)

Numbers

Special characters

C is case sensitive: uppercase and lowercase letters are
different

Keywords are written in lowercase

C Alphabet

11

1. Introduction to the C programming language

The lexicon includes the primitive elements to build sentences

Keywords
Terms with a specific meaning

Lowercase (include, define, main, if, etc.)

Delimiters
Blank spaces, tabs, line breaks

Operators
Represent operations: arithmetic, logic, assignment, etc. (+, -, *, etc.)

Identifiers
Keywords cannot be used as identifiers

Variable names (user_age) – cannot start with a number

Function names (printf, scanf)

Literals
Values that do not change:
Numbers: 2, 3.14159
Strings: "Hello world"
Characters: 'a'

C lexicon

12

1. Introduction to the C programming language

Data
Values processed by the program

Expressions
Combination of operands and operators with a single value as a result

May include function calls, even though they do not return a value
user_age >= 18

3.14159*radius*radius

Statements/Instructions/Statements

Complete action
area=3.14159*radius*radius;

printf("Hello world");

int a;

Blocks or compound statements

Group of statements
Braces { }

The statements of the main function are enclosed in a block

C syntax

13

1. Introduction to the C programming language

14

Data
3.14159, radius, area

Expressions
3.14159*radius*radius

Instructions
area = 3.14159*radius*radius;
printf(“%f \n”, area);
… Blocks

1. Introduction to the C programming language
Example

15

1. Introduction to the C programming language
Example

Lesson 4. Control

flow and loops

16

Outline

1. Introduction to the C programming language

2. Basic program structure

3. Variables and constants

4. Simple data types

5. Expressions and instructions

6. Operators

7. Pointers

8. Basic input/output: printf and scanf

17

2. Basic program structure
Program elements

File inclusion

Main function

Output instruction

Notice the parentheses and the braces!

18

2. Basic program structure

The basic building block in C is the function

A C program is a collection of functions

A function is a piece of code that performs a task
when it is called/invoked

Input values >> Output values

Functions include:

Variable declaration (for storing data)

Statements (for performing operations)

main function

Lesson 6.

Functions

19

2. Basic program structure

All C programs have a main function

Starting point of the program
Automatically started when the program is run

The simplest C program:
int main(void) {}

Valid, but useless

return is optional, but recommended

main function

main function structure
int main(void) {

 …

 return 0;

}

20

system("pause")
In old versions of Dev C++ (Windows

2. Basic program structure

C encourages the use of previous code
New functions can be created and reused

C provides functions in libraries that can be used in
our programs

Input and output functions in stdio.h
printf() and scanf()

To include a file, use the directive #include with
the name of the file:

#include "file.h" Searches in the current folder

#include <file.h> Searches in the default compiler folder

File inclusion

21

2. Basic program structure

Comments are notes to the code that are not
executed

The compiler ignores comments (they are not real code)

They can be used at any point of the program

Its very important to comment the code well:
Make the code readable and understandable

Although we now know perfectly what a program does, maybe we will
have to reuse it in the future

Perhaps other programmers reuse our code and need to understand it

It is a good practice to introduce a comment at the beginning of each file
describing what it does

Comments

22

2. Basic program structure

Syntax for multi-line comments
/* : Open comment block
*/ : Close comment block

/* print radius? on the screen */

/* This program solves a

 second grade equation. */

Comments can span several lines
Comments cannot be nested

In-line comments

// : The remainder of the line is considered a comment

printf("%f \n", area); // print area value

Comments

23

Outline

1. Introduction to the C programming language

2. Basic program structure

3. Variables and constants

4. Simple data types

5. Expressions and instructions

6. Operators

7. Pointers

8. Basic input/output: printf and scanf

24

3. Variables and constants
Storing and using values

25

3. Variables and constants
Storing and using values

26

3. Variables and constants

Data
Information processed by the program

Read, used in calculations, written

Types of data
Variables

Symbols whose value change during the program execution

radius, area

Constants
Symbols whose value do not change during the program
execution

PI

Program data

27

3. Variables and constants

Variables and constants have:

Name
Label or identifier of the symbol

radius, area, PI

Type
Determines which values that can be assigned to the symbol

Integer number, real number, single letter,…

Value
Value of the symbol at a given moment

2, 12.566360

Characteristics of variables and constants

28

3. Variables and constants

Variables can be seen as a piece of the memory to store a
piece of data

User-defined name for a group of cells of the memory

When the name (or identifier) of the variable is used in the program,
the information at the address of the variable is accessed

The memory size allocated for the variable depends on its type, which
must be set when the variable is declared

Definition of variable

2.00

12.5

2

1 radius

0

area 6636

0000

4

3

29

257

256

265 0 0 0 1 1 0 1 0

258

26

A

n

a

0 1 0 0 0 0 0 1

0 1 1 0 1 1 1 0

259 0 1 1 0 0 0 0 1

0 1 1 0 0 0 0 1

97

3. Variables and constants

Before using a variable, it is necessary to declare it
The declaration instruction allocates a piece of the memory to
store the value of the variable
In the declaration, we specify:

name of the variable
data type

A variable can be declared only once

Syntax

<data type> <variable name>;

Examples

float average_mark;

int num1, sum;

char letter;

Variable declaration

30

3. Variables and constants

Self-explanatory names in lowercase are recommended
…but not too long

counter = counter + 1;

num_registered_students = 56;

Variables should be declared at the beginning of the block in
which they are used. They are valid only in this block (scope)!

int main(void) {

 int a;

 int b;

 a = 10;

 printf("%i", a);

}

Variable declaration

31

3. Variables and constants
Data types (see later)

Type Description Size (bytes) Range

int Integer number 2 bytes –32768 to 32767

float
Real number with simple precision

(7 decimal values)
4 bytes 3.4x10-38 to 3.4x1038

double
Real number with double precision

 (up to 16 decimal values)
8 bytes 1.7x10-308 to 1.7x10308

char Alphanumeric characters 1 byte Unsigned: 0 to 255

32

3. Variables and constants

Assigning a value to a variable means that the value on
the right is stored on the variable on the left
A single value or the result of an expression can be assigned
variable <---- value or expression

A variable can be assigned several times
The previous value is overwritten

The assignment operator is =
x=3;

Value 3 is stored at the memory position assigned to x

x=(a+b)/2;

Result of the expression (a+b)/2 is stored at the memory position assigned to x

x=x+3;

Result of the expression x+3 is stored at the memory assigned to x

Assignment

33

3. Variables and constants

Assignments can must done between a variable and
an expressions with compatible types
same type
int <--- int

compatible types
float <--- int adds .0 to the int

int <--- char assigns the ASCII code of the char to the int

char <--- int if the value of the int is out of range, it is truncated

int <--- float the decimal part of the float is truncated

int a=5, b;
char c='Z';
float x, y=3.1;

b=a;
x=a;
b=c;
c=a;
b=y;

Type matching

34

3. Variables and constants

Variable initialization: first value assignment

In the declaration:

int a=8;

After the declaration:

int a;

a = 8;

Multiple declaration/initialization is allowed
int a, b, c;

int a=5, b=4, c=8;

int a=1, b, c=a;

Uninitialized variables have junk values
We cannot assume that they are 0

Initialization

35

3. Variables and constants

A C constant is a symbol whose value is set at the beginning
of the program and does not change later

Two alternatives:
#define directive

#define <name> <value>
#define PI 3.14159

#define KEY 'a'

#define MESSAGE "Press INTRO to continue…"

const qualifier to a variable
const <type> <name> = <value>;

const float PI = 3.14159;

const char KEY = 'a';

const char MESSAGE [] = "Press INTRO to continue…";

Constant identifiers are usually written in uppercase letters

Constants

36

3. Variables and constants
Constants

From this point
on, the symbol
PI represents the
value 3.14159

37

3. Variables and constants
Constants

From this point
on, the symbol
PI represents the
value 3.14159

38

3. Variables and constants

Differences between const and #define
const declarations are for typed variables, finish with ;, and
are assigned just like variables
#define is a directive, does not specify a data type, does not
use an assignment instruction, and does not finish with ;

Advantages of const versus #define

The compiler generates more efficient code
The compiler can check if the type and the assigned value
are compatible

Advantages of #define versus const

const values cannot be used in places where the compiler
expects a literal value (e.g., array definition)

#define and const

39

3. Variables and constants
Operate with data

Constant definition

Variable declaration

Read value

Assign result of the
calculation

Print value

40

Outline

1. Introduction to the C programming language

2. Basic program structure

3. Variables and constants

4. Simple data types

5. Expressions and instructions

6. Operators

7. Pointers

8. Basic input/output: printf and scanf

41

4. Simple data types

Data can be structured or unstructured

Simple data types

Symbols with a single element and a single value
Numbers: integer numbers, real numbers, …

Characters: single letters

Structured data types

Symbols with an internal structure, not a single element
Character strings

Arrays and matrices

Structures

Data types

Lesson 5. Structured

data types

42

4. Simple data types

Size in bytes may be different in different operating systems and platforms

Other simple data types
void

Pointers

Modifiers
int, char: signed, unsigned
int: long, short

C simple data types

43

Type Description Size (bytes) Range

int Integer number 2 bytes –32768 to 32767

float
Real number with simple precision

(7 decimal values)
4 bytes 3.4x10-38 to 3.4x1038

double
Real number with double precision

 (up to 16 decimal values)
8 bytes 1.7x10-308 to 1.7x10308

char Alphanumeric characters 1 byte Unsigned: 0 to 255

4. Simple data types

int datatype is used to represent integer values
int literals
int variables
int expressions

%i specifier in printf and scanf

int literals can be expressed with different notations
(conversely, integers can be formatted to different notations – see later)

Decimal (base 10): 2013

Octal (base 8): 011 (leading 0)

Hexadecimal (base 16): 0x2B (leading 0x)

printf("number: %i \n", 2013); // 2013

printf("number: %i \n", -2013); // -2013

printf("number: %i \n", 011); // 1*8+1*1 --> 9

printf("number: %i \n", 0x2B); // 2*16+11 --> 43

int type

44

4. Simple data types

float and double data types are used to represent real values

double more precision, but also larger memory size

%f specifier in printf and scanf

The decimal separator for literals is .
Scientific notation can be used

Regular: 82.3473

Without leading 0: .34

Scientific notation: 2.4E-4

printf("number: %f \n", 82.3473); // 82.34730

printf("number: %f \n", 2.4E-4); // 0.000240

float and double types

45

4. Simple data types

char data type is used to represent ASCII characters

Literals are enclosed in single quotation marks ' '

%c specifier in printf and scanf

char letter = 'b';

printf("%c", letter);

Special and escape characters can be used

char lineBreak = '\n';

char type

46

4. Simple data types

void data type is used to indicate that no value is expected in

specific parts of the program

1. A function has no parameters
int main(void)

is equivalent to

int main()

2. A function does not return any value
void main(void)

3. Generic pointers
void *p;

void variables are not allowed

void type

47

4. Simple data types

Character strings are used to represent a sequence of characters

Stored in the memory as a strip of characters ended with the
null character '\0'

%s specifier in printf and scanf

String literals are enclosed in double quotation marks " "

String variables and constants are declared as arrays:
char message [] = "Hello world"; // string constant

char name[100]; // string variable of 100 characters at most

scanf("%s", name); // beware: & is not used with strings

 // error if name has more than 100 chars

 // do not consider text after blank space

Character strings

48

Outline

1. Introduction to the C programming language

2. Basic program structure

3. Variables and constants

4. Simple data types

5. Expressions and instructions

6. Operators

7. Pointers

8. Basic input/output: printf and scanf

49

5. Expressions and instructions

An expression is a combination of data by means of one
or several operators

Data can be literal values, variables, constants, and other
expressions

Even calls to functions can be included

Data symbols in an expression are called operands

a + b

Expression composition is guided by rules

Operands must have a concrete type to be used in an operation

Definition of expression

operand operand

operator

50

5. Expressions and instructions

Examples
a + b

x == y

x <= y

Examples of expressions

51

5. Expressions and instructions

Number of operands
Unary

 -: negative number
++: variable increment
--: variable decrement
!: logic negation

Binary

Operation type
Arithmetic

+ : Addition or positive sign
- : Subtraction or negative sign
*: Product
/: Division
%: Module

Assignment

= : Assign
<op>= : Operation and assignment

Relational

== : Equal
< : Less than
<= : Less or equal than
> : Larger than
>= : Larger or equal than
!= : Different from

Logical

! : NOT (negation)
&, &&: AND (conjunction)
|, ||: OR (disjunction)

Operator types

52

5. Expressions and instructions

Instructions or sentences
Orders of the program to accomplish a task
Keywords: short terms interpreted as a command by the computer

Are applied on operators and expressions

Types
According to the function

Declaration
Assignment
Input and output
Control

According to the overall structure of the program
Data process
Input
Output

Definition of instruction

53

5. Expressions and instructions
Example

Variable declaration

Read value

Assign result of the
expression

Print value

54

Outline

1. Introduction to the C programming language

2. Basic program structure

3. Variables and constants

4. Simple data types

5. Expressions and instructions

6. Operators

7. Pointers

8. Basic input/output: printf and scanf

55

6. Operators

The result of arithmetic operators is a numerical value. The
type of the result depends on the type of the operands
The % operator requires two integer operands, being the second one different to 0

The / requires the second operand to be different to 0. When both operands are
integers, the result is also an integer value (no decimals!)

There is no operator for exponentiation, but the pow function of the mathematical
library math.h can be used (sqrt for square roots)

Arithmetic operators

Operator Operation

+ Addition

- Substraction

* Multiplication

/ Division

% Remainder or Module

56

6. Operators
Arithmetic operators - Example

57

6. Operators
Arithmetic operators – pow and sqrt

58

6. Operators

Unary operators

++ --

Increase / decrease a variable

They can be used in prefix or suffix mode:
++x : increment x in 1 and then proceed with the expression evaluation

x++ : evaluate the expression and then increment x in 1

int a=100, b=10;

1) Pre-increment

c = a + ++b; // --> c=100+11=111, a=100, b=11

2) Post-increment

c = a + b++; // --> c=100+10=110, a=100, b=11

Arithmetic operators

59

6. Operators

The result of relational operators is a boolean value
true: 1, false: 0

Relational operators

Operator Operation

< Less than

<= Less or equal than

> Larger than

>= Larger or equal than

== Equals

!= Different from

60

6. Operators

AND, OR, NOT
They are applied on boolean
expressions –which may be the
result of relational operations or
other logic operations

Examples:

To pass the lecture, exam and
exercises must be passed

Pass =
Pass_Exer AND Pass_Exam

To pass the lecture, at least one
of the parts needs to be passed

Pass =
Pass_Exer OR Pass_Exam

Logic operators

T

F

T

F

F

F

T F

T

F

T

T

T

F

T F

AND

OR

NOT

T

F

F

T

Result of the
expression

Operand values

61

6. Operators

Let us suppose that i=7, f=5.5, c=‘w’

Logic operators

Operator

&&

||

!

Operation

and

or

not

Expression Result Value

c == 'w' True 1

c == "w" False 0

(i >= 6) && (c == 'w') True 1

(i >= 6) || (c == 119) True 1

(c != 'p') || ((i+f) <= 10) True 1

!(i > f) False 0

62

6. Operators

Basic assignment
= operation for setting the value of a variable

The previous value, if any, is replaced

Operation and assignment
Change the value of the variable on the left by the result of the operator applied on
the same variable and the expression on the right

+= -= *= /= %=

<var> <op>= <exp> is equivalent to <var> = <var> <op> (<exp>)

int x = 10, y = 2;

y += x; // y = y + x; (y : 12, x : 10)

y -= ++x; // y = y – (++x); (y : -9, x : 11)

Special abbreviation involving boolean expressions:

<variable> =

 <logical expression> ?

 <value if true> : <value if false>;

Assignment

63

6. Operators

If more than one operator appears in an expression,
precedence rules are applied to determine which
operators are firstly evaluated

a + b > c || c < 0

Precedence rules are very similar in all programming
languages

Parenthesis should be used

Expressions enclosed with parenthesis are evaluated first,
from the inner-most to the outer-most

((a + b) > c) || (c < 0)

Precedence

64

6. Operators

Operators are classified according to their precedence
From higher to lower precedence (a, b are expressions with proper type)
Expressions with operators of the same category are evaluated from left to right

 Category

 Unary ! NOT (negación lógica) !a

++ Increment ++a

-- Decrement --a

- Sign change -b

* Indirection *p

& Address &a

Multiplication * Multiplication a*b

/ Division a/b

% Module a%b

Addition + Addition a+b

- Substraction a-b

Relational < Less than a<b

<= Less or equal than a<=b

> Larger than a>b

>= Larger or equal than a>=b

Equality == Equals to a == b

!= Different to a != b

Logic && AND a && b

|| OR a || b

Assignment = assignment a = b

Outline

1. Introduction to the C programming language

2. Basic program structure

3. Variables and constants

4. Simple data types

5. Expressions and instructions

6. Operators

7. Pointers

8. Basic input/output: printf and scanf

66

7. Pointers

A pointer is a variable that stores a memory address (it does not contain a
normal value, but a number corresponding to the position of a memory cell)

Let us suppose that T is a data type

Then, T* is a pointer to a variable of type T

int age; Integer variable

int *p; Integer pointer variable

Usually, the address value is the memory address of another variable

Definition

67

22FF01 18

K 22FF10

22FF11 22FF01

int age = 18;

char letter = 'K';

int *p;

p = &age;

…

p

letter

age

7. Pointers

Pointer declaration
<data type to point to> <* symbol> <name of the pointer variable>;
int *p; pointer p to an integer variable

char *ppt; pointer ppt to a char variable

address-of operator (&)
&<variable> : obtains the memory address of the variable
&age

indirection operator (*)
*<pointer> : obtains the variable pointed by the pointer
*p

Pointer declaration and operators

68

7. Pointers

Pointers must be always initialized

How can we assign a value to a pointer?
1) directly

int *p;

p = 0x22FF01;

Not recommended: we do not know the memory address of a variable

2) indirectly (address operator)

<pointer> = &<variable>;

int *p;

int age = 18;

p = &age;

Recommended: we say that the pointer (p) points to the variable (age)

We can indirectly change the value of the variable through the pointer (indirection operator)

*<pointer> = <expression>;

*p = 21;

After the pointer p has been assigned the address of age, *p is the value of the variable age

Pointers can be assigned only address values of variables of the pointer type

Operating with pointers

69

7. Pointers

70

22FF01 18

22FF11 ?

int main(void) {

 int age1 = 18;

 int *p;

 int age2;

 printf("%i \n", age1); // 18

 age2 = 0;

…

0 22FF02

 p = &age1;

 age1 = age1 + 5;

 age2 = *p;

age1

p

age2

22FF01 23

22FF11 22F01

…

23 22FF02

age1

p

age2

22FF01 25

22FF11 22F01

…

23 22FF02

age1

p

age2

 *p = 25;

 printf("%i \n", age1); // 25

}

7. Pointers
Example

71

7. Pointers

The output of the program is
u=3 &u=28FF14 pu=28FF14 *pu=3

v=3 &v=28FF10 pv=28FF10 *pv=3

The relation between the pointers and the variables is shown in
this diagram:

Example

28FF14

28FF10

u

3

3

 v

 pu

pv

Address 28FF14

Address 28FF10

72

7. Pointers

The void can be used to declare a generic
pointer:
void *pointer;

NULL is a special value to explicitly indicate that the
pointer is not pointing to any valid memory address

#include <stdio.h> // NULL is defined in stdio.h

int main(void) {

 int *p = NULL;

 …

void pointers and NULL pointers

73

Outline

1. Introduction to the C programming language

2. Basic program structure

3. Variables and constants

4. Simple data types

5. Expressions and instructions

6. Operators

7. Pointers

8. Basic input/output: printf and scanf

74

8. Basic input and output

Programs receive input data (e.g., keyboard) and
provide output data (e.g., screen)

Input and output (I/O) functions allow reading and
printing data
C does not provide input/output instructions

I/O is achieved with functions included in the standard
library –this library is part of the core of the language

It is necessary to include at the beginning of the
program the file stdio.h, where these functions are
declared

#include <stdio.h>

I/O functions

75

8. Basic input and output

printf()

Prints information on the standard output device
Usually, on the screen

Syntax
printf("argument format", arguments)

#include <stdio.h>

int main () {

 int n=10;

 printf ("%i", n);

 return 0;

}

printf

76

8. Basic input and output

Placeholders
%[flags][width][.precision][length]<type>

Flags
+ : prints number sign

space: prefixes non-negative values with a blank space

- : left-aligns the output

: trailing numbers and decimal values are always printed

0: uses 0 instead of spaces for padding

Width
Minimum number of characters to output (pads if necessary)

Precision
Maximum limit of characters to output (rounds if necessary)

printf

77

8. Basic input and output
printf

Type Argument format

%c Character

%d, %i Integer

%O Integer, octal format

%u Integer, unsigned

%x Hexadecimal

%f Float

%e Float, scientific notation

%lf Double

%s Character string

%p Pointer

78

8. Basic input and output

Special characters
\n : Line break

\t : Tabulation

\b : backspace

Escape characters
\' : to print the ' character

\" : to print the " character

\\ : to print the \ character

Special characters

79

8. Basic input and output

scanf()

Reads information from the standard input device
Usually, the keyboard

Syntax

scanf("argument format", &variable)

The & operator means that the variable in the arguments is passed by reference

Pass by reference: the address of the variable is passed; the value is changed in the function

More than one variable can be read in the same scanf instruction

#include <stdio.h>

int main (void) {

 int n;
 float mark;

 printf ("Enter student number and mark:\n");

 scanf ("%i %f", &n, &mark);

 printf ("\n The mark of the student %i is %f\n", n, mark);

}

scanf

80

8. Basic input and output

Reading strings with scanf

Do not use &
char name[100];

scanf("%s", name);

scanf %s stops reading when it finds a blank space in the input

scanf("%s", name);

Miguel de Cervantes

printf("Hello %s", name);

Hello Miguel

To read a string including blank spaces we use:

scanf ("%[^\n]", name);

%[^\n] means that scanf reads until a line break character is found

scanf

81

Structure of a C program

#include Pre-processor directives
#define

/* Global declarations */
Function prototypes

/* Main function */
int main (void)
{
 Local variable and constant declaration
 Instructions
}

/* Definition of other functions */
type function_name (...)
{
 ...
}

82

Bibliography

Basic

• Ivor Horton. Beginning C: From Novice to Professional. Apress,
2006 (4th Edition) – Chapters 1, 2

• Stephen G. Kochan. Programming in C. Sams, 2004 (3rd
Edition), Programming in C – Chapters 3, 4

Additional information

• Stephen Prata. C Primer Plus. Sams, 2004 (5th Edition) –
Chapters 1-4

Recommended lectures

83

http://proquest.safaribooksonline.com/book/programming/c/9781590597354/programming-in-c/1
http://proquest.safaribooksonline.com/book/programming/c/9781590597354/first-steps-in-programming/21
http://proquest.safaribooksonline.com/book/programming/c/9780768689068/compiling-and-running-your-first-program/11
http://proquest.safaribooksonline.com/book/programming/c/9780768689068/variables-data-types-and-arithmetic-expressions/21
http://proquest.safaribooksonline.com/book/programming/c/0672326965/getting-ready/1
http://proquest.safaribooksonline.com/book/programming/c/0672326965/getting-ready/1
http://proquest.safaribooksonline.com/book/programming/c/0672326965/getting-ready/1

Outline

1. Introduction to the C programming language

2. Basic program structure

3. Variables and constants

4. Simple data types

5. Expressions and instructions

6. Operators

7. Pointers

8. Basic input/output: printf and scanf

84

