
jgromero@inf.uc3m.es jgromero@inf.uc3m.es

Lesson 7
Search, sort and merge algorithms

Programming
Grade in Industrial Technology Engineering

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0 España License.

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES
http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.es_ES

jgromero@inf.uc3m.es

Outline

1. Search

2. Sort

3. Merge

2

jgromero@inf.uc3m.es

Search, sort and merge algorithms

Algorithms to:
Search a value in a list
Sort a list of values
Merge two lists of values

Lists are represented as one-dimension arrays

Search

Ordered list
Unordered list

Sort
Bubblesort
Insertionsort
Selectionsort

Merge

Introduction

3

jgromero@inf.uc3m.es

Outline

1. Search

2. Sort

3. Merge

4

jgromero@inf.uc3m.es

1. Search

Search algorithms aim at finding a value in a
collection (usually, the first occurrence)

Input: Array of values list, length n, value to find e

Output: Position of e in list; -1 if not found

Find a value in an array of integers
int find(int list[], int n, int e)

Input:
list ← {5, 6, 3, 1, 8, 9, 0, 3, 4, 1}

n ← 10

e ← 1

Output:

3

Definition

5

jgromero@inf.uc3m.es

1. Search

The algorithm looks sequentially for the value e in the list:

Linear search (also named sequential search) is used for
unsorted lists

Linear search

6

location = -1;
i = 0;
found = false;

while ((!found) && (i < n))

if (list[i] == e)
location = i;
found = true;

else
 i++;

return location;

jgromero@inf.uc3m.es

1. Search
Linear search

7

jgromero@inf.uc3m.es

1. Search

Ordered lists
Optimizations can be applied to speed up the searching
procedure when the list is ordered

(Similar to a dictionary)

Optimized linear search

The value is searched until:
It is found
The loop index is beyond the position in which it should be stored

Binary search

The central element of the list is checked
If it is the searched element, the algorithm ends
If not, the search is repeated in the corresponding half of the list

Optimizations for sorted lists

8

jgromero@inf.uc3m.es

1. Search
Optimized linear search

9

location = -1;
i = 0;
found = false;

while ((!found) && (i < n) && (list[i] <= e))

if (list[i] == e)
location = i;
found = true;

else
 i++;

return location;

jgromero@inf.uc3m.es

1. Search
Optimized linear search

10

jgromero@inf.uc3m.es

1. Search
Binary search

11

location = -1;
left = 0;
right = n - 1;
middle = (left+right) / 2;
found = false;

while ((left <= right) and (!found))

if (list[middle] == e)
found = true;
location = middle;

else

if (e < list[middle])
right = middle – 1;

else
left = middle + 1;

middle = (left+right) / 2;

return location;

jgromero@inf.uc3m.es

1. Search
Binary search

12

70 59 56 43 37 28 22 14 11 5

70 59 56 43 37

43 37

37

37

70 59 56 43 37 28 22 14 11 5 list

n = 10

e

jgromero@inf.uc3m.es

1. Search
Binary search

13

70 59 56 43 37 28 22 14 11 5

70 59 56 43 37

43 37

37

37

e

middle right left

0 1 2 3 4 5 6 7 8 9

37 > 28

left

middle + 1

middle

(left+right)/2

right

37 < 56

left rigth

middle - 1

middle

(left+right)/2

found = true

location = middle

Iteration 1
Value not found
Continue with the second
half of the array

Iteration 3
Value found

Iteration 2
Value not found
Continue with the first
half of the array

jgromero@inf.uc3m.es

1. Search
Binary search

14

70 59 56 43 37 28 22 14 11 5

22 14 11 5

5

7

e

middle right left

0 1 2 3 4 5 6 7 8 9

7 < 28

left middle

(left+right)/2

right

7 < 11

left

right

middle - 1

middle

(left+right)/2

Iteration 1
Value not found
Continue with the first
half of the array

Iteration 2
Value not found
Continue with the first
half of the array

Iteration 3
Value not found
Cannot continue

left

middle
right

jgromero@inf.uc3m.es

1. Search
Binary search

15

jgromero@inf.uc3m.es

Outline

1. Search

2. Sort

3. Merge

16

jgromero@inf.uc3m.es

2. Sort

Sort algorithms aim at rearranging the values of
a collection to position them in order (usually, in
increasing order)

Input: Array of values list, list size n

Output: Array of values list* ordered

void sort(int list[], int n)

Input:
list ← {7, 2, 8, 5, 4}

n ← 5

Output:
list ← {2, 4, 5, 7, 8}

Introduction

17

jgromero@inf.uc3m.es

Idea:

- Compare an element list[i] with the adjacent value list[i+1]

- If list[i] > list[i+1], the values are swapped (increasing order)

- Repeat the procedure while swaps are performed

do {
swapped = false;

for (i=0; i <= n-2; i++)

if (list[i] > list[i+1])
swap(list[i], list[i+1]);
swapped = true;

} while (swapped);

2. Sort
Bubblesort

18 http://www.youtube.com/watch?v=UnK5ueUgc88

To change the
order, change
the comparison
operator

The same
algorithm can be
applied to other
data types

http://www.youtube.com/watch?v=UnK5ueUgc88
http://www.youtube.com/watch?v=UnK5ueUgc88

Bubblesort

7 2 8 5 4

2 7 8 5 4

2 7 8 5 4

2 7 5 8 4

2 7 5 4 8

2 7 5 4 8

2 5 7 4 8

2 5 4 7 8

2 7 5 4 8

2 4 5 7 8

2 5 4 7 8

4 5 7 8

2 4 5 7 8

END

1st iteration
The largest value is

pushed towards the the
end of the array

2nd iteration
The second largest value

is pushed towards the
end of the array

It is not necessary to

compare with the last
element of the array

3rd iteration
The three largest values

are at the end of the
array

4th iteration
No swapping

The swap variable is set

to false and the
procedure ends

2

At most, n-1 iterations are required

5 4 7 8 2

At least, n-i comparisons required in
each iteration

19

jgromero@inf.uc3m.es

2. Sort
Bubblesort

20

jgromero@inf.uc3m.es

2. Sort

Idea:

- For each value of the list (at position i),

- Find the smallest value (at position minPos) of the elements
i+1,…, n-1

- If list[i] > list[minPos], the values are interchanged

Selectionsort

21

for (i=0; i <= n-2; i++)
minPos = i;
for (j=i+1; j < n; j++)

if (list[j] < list[minPos])

minPos = j;

swap(list[i], list[minPos])

http://www.youtube.com/watch?v=TW3_7cD9L1A

http://www.youtube.com/watch?v=TW3_7cD9L1A
http://www.youtube.com/watch?v=TW3_7cD9L1A

Selectionsort

7 2 8 5 4

2 7 8 5 4

2 4 8 5 7

2 4 5 8 7

2 4 5 7 8

First iteration
First position is 0
i=0, minPos=1

Second iteration
i=1, minPos=4

j = 1 … n-1

n-1 iterations of the outer loop
are required

j = 2 … n-1

Third iteration
i=2, minPos=3 j = 3 … n-1

j = 4 … n-1 Forth iteration
i=3, minPos=4

END

22

jgromero@inf.uc3m.es

2. Sort
Selectionsort

23

jgromero@inf.uc3m.es

2. Sort

Idea:

- Assume that the elements 0, …, i-1 of the list are ordered

- Find the position k in 0, …, i-1 where the element at
position i should be placed

- (Simultaneously) Shift to the right the values at k, …, i-1
and insert list[i] at position k

Insertionsort

24

for (i=1; i < n; i++)
e = list[i];
j = i-1;
while((j >= 0) && (list[j] > e))

list[j+1] = list[j];
j = j-1;

list[j+1] = e;

http://www.youtube.com/watch?v=Fr0SmtN0IJM

http://www.youtube.com/watch?v=Fr0SmtN0IJM
http://www.youtube.com/watch?v=Fr0SmtN0IJM

jgromero@inf.uc3m.es

2. Sort
Insertionsort

25

jgromero@inf.uc3m.es

2. Sort

How long does it take to sort an array of n elements?

Algorithm performance is measured according to the
number of comparison and swapping operations that are
required to obtain the solution

This number strongly depends on the starting situation: sorted array,
unsorted, reversed, etc.

Some algorithms realize that the list is ordered and perform better

In general, basic sorting algorithms (bubble, selection,
insertion) are not suitable for large arrays (the differences
for small arrays are not significant)

There are more efficient (and complex) sorting algorithms:
shell, heap, merge, quicksort, etc.

Comparison

26

jgromero@inf.uc3m.es

2. Sort

Algorithms can be compared according to the number of
operations performed in the best case, worst case, and average
case

Being n the length of the array, the upper complexity of the
algorithm is bounded by:

Comparison

27

Algorithm Best ≈ Worst ≈ Average ≈

Bubble n n2 n2

Selection n2 n2 n2

Insertion n n2 n2

Quicksort n · log(n) n2 n · log(n)

Yes, we can… but not with bubblesort.
http://www.youtube.com/watch?v=k4RRi_ntQc8

http://www.youtube.com/watch?v=k4RRi_ntQc8

jgromero@inf.uc3m.es

2. Sort

Bubble sort is the simplest, but also has a the
higher worst-case execution time. Nevertheless, it
behaves very well with ordered arrays

Selection sort is easy to implement and more
efficient that Bubble sort, but it behaves very bad
even if the array is ordered (it cannot be known if
the array is already ordered at any iteration)

Insertion sort is simple to implement and behaves
quite well for almost ordered arrays. It is also faster
in practice

Comparison

28

jgromero@inf.uc3m.es

Outline

1. Search

2. Sort

3. Merge

29

jgromero@inf.uc3m.es

3. Merge

Merging consists in combining sorted sequences of
values into a single sorted sequence

Input: Sorted array of values list1 and list2, list size n1, n2
Output: New sorted array of values list with size n1+n2

void merge(int list1[], int n1, int list2[], int n2,
 int list[])

Input:
list1 ← {2, 4, 5, 7, 8}
n1 ← 5
list2 ← {1, 3, 8}
n2 ← 3

Output:
list ← {1, 2, 3, 4, 5, 7, 8, 8}

Introduction

30

jgromero@inf.uc3m.es

3. Merge

Some advanced sorting algorithms use merging
The list is divided in smaller pieces to be ordered
and, finally, the parts are merged

E.g.: Mergesort

'Divide & Conquer' strategy: a problem can be
solved by splitting it into parts, solving the parts,
and joining the partial solutions

Merging is also convenient if the number of
values to sort is larger than the memory size

Uses

31

jgromero@inf.uc3m.es

3. Merge

Idea:

- Define two indices i,j to traverse all the elements
of list1,list2 respectively

- Determine the value to add to the merged array by
comparing list1[i] and list2[j]

- Copy the remaining elements of the list that has not
been completely traversed to list

Algorithm

32

jgromero@inf.uc3m.es

3. Merge
Algorithm

33

i = 0; j = 0; k = 0;

while(i < n1 && j < n2)

if(list1[i] < list2[j]
 list[k] = list1[i]
 i = i+1
else
 list[k] = list2[j]
 j = j+1
k = k+1

if(i < n1)
 for(l=i; l < n1; l++)
 list[k] = list1[l]
 k = k+1
else
 for(l=j; l < n2; l++)
 list[k] = list2[l]
 k = k+1

jgromero@inf.uc3m.es

3. Merge
Implementation

34

jgromero@inf.uc3m.es

Bibliography

Basic

• Paul J. Deitel, Harvey M. Deitel. C: How to Program. Prentice
Hall, 2006 (5th Edition) – Chapter 16 (sections 1, 3, 4)

Recommended lectures

35

http://proquest.safaribooksonline.com/book/programming/c/9780136085881/sorting-a-deeper-look/ch16lev1sec1
http://proquest.safaribooksonline.com/book/programming/c/9780136085881/sorting-a-deeper-look/ch16lev1sec3
http://proquest.safaribooksonline.com/book/programming/c/9780136085881/sorting-a-deeper-look/ch16lev1sec4

