
Programming Grade in Industrial Technology Engineering
jgromero@inf.uc3m.es

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

Lesson 4. Control Flow

Exercises III – Advanced

Exercise 1. Print numbers in groups

Write a program that prints on the screen integer numbers in {1, 2, …, 1000}. Numbers will be

printed in 20-element groups –the program asks the user whether he/she wants to continue or

not after visualizing a group.

Extend the program to let the user specify the lower bound of the interval, the upper bound of

the interval, and the size of the groups.

Exercise 2. Repeated values

Write a program that reads from the keyboard integer numbers until 0 is entered. Next, the

program prints on the screen the length of the largest sequence of equal numbers entered in a

row, and the value of this repeated number.

Example:

Input: 8 8 8 4 5 6 6 6 7 7 7 7 2 0

Output: The largest sequence of equal numbers (7) in a row had length (4)

Exercise 3. Factorial

Write a program that reads a positive integer number and prints out its factorial.

NOTE: The factorial of an integer n is the product of the integer values from 0 to n:

n! = 1 * 2 * 3 * … * (n-1) * n

Exercise 4. Root

Write a program that calculates the square root of a number with (at most) n decimal digits by

applying the method of successive square approximations.

Compare the obtained result with the value calculated with the sqrt function of the <math.h>

library.

Note: Successive square approximation method

This method is based on a ‘trial and error’ strategy. The algorithm to obtain the result starts

with an initial candidate solution, which is modified in successive steps to converge to the real

solution.

To calculate the square root of a number num, 0 is taken as the initial candidate sol(ution). In

the first stage, sol is incremented in 1 while sol * sol < num. The procedure is repeated until sol

* sol == num (success, end algorithm) or sol * sol > num (proceed to second stage). In the

second stage, the procedure discards the last increment to sol. Next, it reduces the increment

value by a 0.1 factor to proceed with the calculation of the next decimal of the approximation.

In addition, it increments in 1 the precision achieved. The procedure continues by executing

Programming Grade in Industrial Technology Engineering
jgromero@inf.uc3m.es

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

again stage 1 with the new increment value if the achieved precision is less or equal than

precision value specified by the user.

Exercise 5. Divison

Write a program that calculates the integer division of two positive values a/b by applying the

method of successive subtractions.

Note: Successive subtractions approximation method

 ⏞

(i.e., c is the number of times that b can be added before exceeding a.)

Exercise 6. Magic number

The magic number of a person is calculated from his/her birthdate as follows:

Birthdate: 05/02/1973

Magic number: 5 + 2 + 1973 = 1980 --> 1 + 9 + 8 + 0 = 18 --> 9

Write a program that reads the user birthday and prints out the corresponding magic number.

The program must check that the birthday is correct: year > 0; 1 <= month <= 12; 1 <= day <=

days of month. Do not consider leap years.

