
Programming Grade in Industrial Technology Engineering
jgromero@inf.uc3m.es

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

Lesson 6. Functions
Exercises

Exercise 1. Write a function to calculate the n-th power of a number x –being n an integer
value and x a double value.

Exercise 2. Write a function with two integer parameters that returns the largest of them.

Exercise 3. Write a program that presents the menu below and perform the selected
operation. Use a function to print the menu (it must return the selected option) and three
functions for each respective task (they must return the corresponding area).

Calculate the area

1. Calculate the area of a triangle (base, height)
2. Calculate the area of a trapezoid (edge a, edge b, height)
3. Calculate the area of a rectangle (base, height)

Exercise 4. Write a function to swap the values of two integer variables.

Exercise 5. The final mark of the Programming lecture is accounted as follows: first partial
exam 20%; second partial exam 20%; June exam 60%. Nevertheless, if the mark of the June
exam is larger than the mark obtained with the previous calculation, this is the mark.

Develop a program to read three marks and calculate the final mark of a student.
Next, the program must ask the user whether a new mark should be calculated or the
program should end. Write two functions: (i) a function to calculate the mark with the
continuous evaluation; (ii) a function to obtain the larger of two values.

Exercise 6. Develop a function named factorial to calculate the factorial of an integer
number.

Exercise 7. Based on the functions created in 1 and 6, develop a function named
approximation_e to calculate an approximation to the number ex with precision n according
to the following formula:

ex »
xk

k!
k=0

n

å

The function must receive two parameters: n (integer value >= 0) and x (real). The function
must return a real value with the approximation to ex (real).

For instance:

 x = 1, n = 5

Programming Grade in Industrial Technology Engineering
jgromero@inf.uc3m.es

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

7166,2
!5

1

!4

1

!3

1

!2

1

!1

1

!0

1

!

15

0

1
k

k

k
ee

 x = 2, n = 4

6
!4

2

!3

2

!2

2

!1

2

!0

1

!

2 4324

0

2
k

k

k
e

Exercise 8. Develop a program to calculate various approximations to ex by using the method
approximation_e for different values of n.

The program must read two values from the keyboard: x (real) and max (positive integer):

o x is the exponent of the approximation ex

o max determines the maximum value of n that will be used to calculate the

approximation; i.e., the method approximation_e will be executed for n = {1, 2,

…, max}

The program must print on the screen the value of n, the value of the approximation for this
n, and the value of ex as obtained with the exp function of the math library (math.h).

For example, for x=2 and max=10, the output must be:

 n approx exp

 1 3.00000 7.38906

 2 5.00000 7.38906

 3 6.33333 7.38906

 4 7.00000 7.38906

 5 7.26667 7.38906

 6 7.35556 7.38906

 7 7.38095 7.38906

 8 7.38730 7.38906

 9 7.38871 7.38906

10 7.38899 7.38906

(Note that, due to range and precision of data types, the previous values may be different.
The results for large values of x and max may result in values out of the range of the types
and be incorrect.)

Exercise 9. Write a program to calculate the largest and the smallest values of a one-
dimension array of integers. Use two functions to obtain each one of respective values.

Exercise 10. Write a program to calculate the largest and the smallest values of a one-
dimension array. Use only one function to obtain both values.

Exercise 11. Develop functions to perform the following operations involving matrices –
represented as two-dimension arrays.

Programming Grade in Industrial Technology Engineering
jgromero@inf.uc3m.es

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

(NOTE: Matrices size (number of rows and columns) must be defined as a constant with the
directive #define).

a. Read values

Parameters: float m [ROWS][COLUMNS]
Returns: Nothing
Tasks: Reads matrix values

b. Print matrix
Parameters: Matrix float m[ROWS][COLUMNS]
Returns: Nothing
Task: Prints m on the screen

c. Find largest value of the matrix

Parameters: Matrix float m[ROWS][COLUMNS]
Returns: double max
Task: Obtains the largest value of the matrix

d. Find smallest value of the matrix

Parameters: Matrix float m[ROWS][COLUMNS]
Returns: double min
Task: Obtains the smallest value of the matrix

e. Add matrices

Parameters: Matrices double m1[ROWS][COLUMNS], double

m2[ROWS][COLUMNS], Matrix double r[ROWS][COLUMNS]
Returns: Nothing
Task: Calculates r = m1 + m2

f. Subtract matrics

Parameters: Matrices double m1[ROWS][COLUMNS], double

m2[ROWS][COLUMNS], Matrix double r[ROWS][COLUMNS]
Returns: Nothing
Task: Calculates r = m1 - m2

g. Scalar multiplication
Parameters: Matrices double m[ROWS][COLUMNS], double x, Matrix
double r[ROWS][COLUMNS]
Returns: Nothing
Task: Calculates r = x x m

h. Matrix multiplication

Parameters: Matrices double m1[ROWS][COLUMNS], double

m2[COLUMNS][ROWS], Matrix double r[ROWS][ROWS]
Returns: Nothing
Task: Calculates r = m1 * m2

i. Matrix transpose
Parameters: Matrix double m[ROWS][COLUMNS], Matrix double

r[COLUMNS][ROWS]

Programming Grade in Industrial Technology Engineering
jgromero@inf.uc3m.es

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

Returns: Nothing

Task: Calculates r = transpose(m)

Write a main function to test the functioning of the implemented functions.

Exercise 12. Write a program implementing functions to operate with fractions. Fractions
must be represented as 2-component structures. Operations are: addition, multiplication,
division, opposite, and reciprocal –a function must be implemented for each operation.

Write a main function presenting a menu to the user to select the operation to perform –
then, the program must read the corresponding data from the keyboard. Repeat until the
user select ‘Exit’ option.

Exercise 13. Write a program implementing the functioning of a vending machine. The
program will ask the user for the price of a product and the money introduced in the
machine. The program will calculate the number of coins of each type that should be
returned to the user. Let us assume that the machine has enough coins to return the
change. The values of the coins are 1, 2, 5, 10, 20, 50 cents; 1, 2 Euros. Use functions to
make the main function more readable.

Exercise 14. Extend the previous program to calculate the change, but assuming that the
number of available coins is limited. (The number of available coins of each type can be
declared as a constant.)

Exercise 15. Write a C program to test if a Sudoku solution is correct, according to the
following rules:

a) The Sudoku board has 81 cells (9x9 board). The board is divided in 9 3x3 non-
overlapping sub-boards.

b) A Sudoku board is correct when:
a. The cells have values in {1, …, 9}
b. A value cannot be repeated in a row
c. A value cannot be repeated in a column
d. A column cannot be repeated in a sub-board

Example of a correct solution

