
Programming Grade in Industrial Technology Engineering

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

Programming with the Dev C++ IDE

1 Introduction to the IDE
Dev-C++ is a full-featured Integrated Development Environment (IDE) for the C/C++

programming language. As similar IDEs, it offers to the programmer a simple and unified tool

to edit, compile, link, and debug programs. It also provides support for the management of the

files of a program in “projects” containing all the elements required to produce a final

executable program.

Dev-C++ uses Mingw port of GCC (GNU Compiler Collection) as a compiler. It can creates native

Win32 executables, either console or GUI, as well as DLLs and static libraries. Dev-C++ can also

be used in combination with Cygwin or any other GCC based compiler. In this session, we will

use Mingw --included in the default Dev-C++ distribution-- to create console C programs.

Dev-C++ is a Free Software distributed under the terms of the GNU General Public License

(GPL). The IDE can be downloaded here:

http://prdownloads.sourceforge.net/dev-cpp/devcpp-4.9.9.2_setup.exe.

Dev-C++ can be installed on any Windows machine with Windows XP and Windows 7. This

tutorial uses Dev-C++ 4.9.9.2 on Windows 7 (configuration in the computer labs as of course

2012-2013). For the sake of simplicity, use the default installation options in your home

computer. For Windows 8, you are recommended to install the Orwell Dev-C++ fork with

bundled TDM compiler available here:

http://sourceforge.net/projects/orwelldevcpp/files/Setup%20Releases/Dev-

Cpp%205.4.0%20TDM-GCC%20x64%204.7.1%20Setup.exe/download

Dev-C++ features are:

- Support GCC based compilers (Mingw included)

- Integrated debugging (with GDB)

- Support for multiple languages (localization)

- Class Browser

- Debug variable Browser

- Code Completion

- Function Listing

- Project Manager

- Customizable syntax highlighting editor

- Quickly create Windows, console, static libraries and DLL

- Support of templates for creating your own project types

- Makefile creation

- Edit and compile Resource files

- Tool Manager

- Print support

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es_ES
http://prdownloads.sourceforge.net/dev-cpp/devcpp-4.9.9.2_setup.exe
http://sourceforge.net/projects/orwelldevcpp/files/Setup%20Releases/Dev-Cpp%205.4.0%20TDM-GCC%20x64%204.7.1%20Setup.exe/download
http://sourceforge.net/projects/orwelldevcpp/files/Setup%20Releases/Dev-Cpp%205.4.0%20TDM-GCC%20x64%204.7.1%20Setup.exe/download

Programming Grade in Industrial Technology Engineering

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

- Find and replace facilities

- Package manager, for easy installation of add-on libraries

Documentation about the C programming language and the IDE itself can be accessed from

Dev-C++ by clicking on Help > Help on Dev-C++.

2 First steps
The application development process encompasses the following steps:

1. Create a project

The type of application and the programming language to be used are specified.

2. Write source code

Write the program in C and save the source code file.

3. Compile and link the code

The source code is compiled and linked to generate a running program. Other files of

the project may be created.

4. Fix compilation errors, if any

If the syntax of the program is not correct, the compilation fails and the compiler

generates a message related to the error/s. The programmer must correct the errors.

5. Run the program

Run the program to validate the functioning.

6. Fix execution errors, if any

If the actions performed by the program are not as expected, it is necessary to correct

the source code. It may be also convenient to use the debugger to find complex errors.

2.1 Project creation
A project is a center for managing your different source files and options inside Dev-C++. It

helps you navigate through your code, and easily set different parameters, like the type of

program you are doing (GUI, console, DLL ...).

A project groups several files with a common purpose. In our programs, projects will include a

file with metadata about the project (.dev), a file with C source code (.c), a file with object

code (.o), and a file with linking instructions (makefile.win). Only the .c file must be explicitly

created –the remaining files are automatically created by Dev-C++.

When creating a project, Dev-C++ asks the user where the files must be stored. It is convenient

to use different folders for each project, since by default, the source code is named main.c

and previous files can be overwritten.

Project type determines the type of application that will be developed. In this lecture, we will

create Console projects. These are projects that run in a text-mode screen without windows or

graphics. User interaction is performed by typing information on the keyboard (input) and

printing characters on the screen (output) with proper read and write instructions.

2.1.1 Steps

a. Start Dev-C++

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es_ES

Programming Grade in Industrial Technology Engineering

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

Start the IDE from the Program folder Dev-C++ or Bloodshed Dev-C++.

Figure 1. Running Dev-C++ in the computer lab

b. Create a project

Before creating the source code file, it is necessary to create a project (File > New > Project).

Figure 2. Project creation parameters

Options:

Console application

Name (name of the project)

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es_ES

Programming Grade in Industrial Technology Engineering

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

C Project (for C language)

Select the folder to store the files in the next window. It is convenient to store each project in

a different folder.

Figure 3. Saving project in a specific folder

After indicating the folder where the project configuration file (.dev) will be saved, the IDE
generates a basic source code file (by default, main.c). These files are not saved in the project
folder until the programmer saves or compiles the program (see below).

NOTE: The statement system(“PAUSE”); is automatically included to pause the execution of

the program before closing the terminal window in order to make it possible to see the output

of the program.

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es_ES

Programming Grade in Industrial Technology Engineering

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

Figure 4. Dev-C++ launches after project creation

The IDE window includes three sub-windows: the Project Files Explorer, the Result Tabs, and

the Source Code Editor. These windows can be resized and minimized.

The Files Explorer window shows the name of the project and the included files. The Project

tab usually contains a single file with the source code of the program. In this pane, we can find

two additional tabs: Classes and Debug. Classes tab shows the functions of the program.

Debug tab shows watched variables in the debugging process.

The Results window is used to present the results of the actions of the IDE: compilation errors,

compiling directives, debugging commands, etc.

The Source code editor shows the code of the program.

c. Files created

The files of the project are saved when the source code file is saved. The remaining files of the

project are saved when the application is compiled and stored in the project folder.

File Extension Description

Project file .dev Project configuration data

Makefile .win Required for the compilation process. Manages
program dependencies and includes instructions for
the linker

Source code file .c Source code

Object file .o Object code resulting from the compilation of the
source code. Each .c has a corresponding .o after the
compilation

Executable file .exe Executable application

2.2 Writing source code
Once the project has been created, we can start writing our C program.

It is recommended to use the classic color configuration of the editor (Tools > Editor options >

Syntax > Color Speed Settings > Classic) and to activate the support for opening and closing

brackets (Tools > Editor options > General > Highlight matching braces / parenthesis).

The editor highlights with different colors keywords and other elements of the C language. The

classic scheme uses:

 Light blue for comments

 Green for included libraries

 Red for text strings

 Bold black for C keywords

For instance, the HelloWorld program is shown as follows:

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es_ES

Programming Grade in Industrial Technology Engineering

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

Figure 5. The HelloWorld program

Exercise 1. Write the source code of the program HelloWorld in C. Open the file created by

the IDE (main.c) with a text editor (e.g. Notepad) and check its contents.

2.3 Compilation and link
To run a program, the source code must be compiled and linked. Dev-C++ performs the

complete process by clicking the Compile button (or Ctrl + F9).

While the compilation and link process is being performed, the IDE shows a dialog with related

information. If the process is successful, the window shows the message Done.

Figure 6. Compilation window (success)

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es_ES

Programming Grade in Industrial Technology Engineering

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

The Compile Log tab shows information about the process.

Figure 7. Compilation process output

After the process, we can check that the files described in the previous table have been

created.

Exercise 2. Compile the HelloWorld program and check that the corresponding files have been

created, including the .exe program. Check that it is possible to run the program out from the

Windows Explorer by double-clicking on it.

2.4 Fixing compilation errors
Compilation errors are errors that are detected by the compiler. They are also named design-

time errors. To correct compilation errors, it is recommended to solve the first one and then to

re-compile the program again, since next errors are frequently wrong sections of the code that

the compiler cannot interpret as a result of the first error.

Dev-C++ underlines in red the line of code where the compilation error has been detected. The

Compile tab of the Results window provides a detailed description of the error. The Compile

Log shows the error message issued by the compiler program.

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es_ES

Programming Grade in Industrial Technology Engineering

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

Figure 8. Compilation errors

Common errors are: selecting a wrong project type (instead of Console), selecting a wrong

language type (instead of C), or library inclusion errors (wrong syntax, library missing, etc.).

2.5 Running the program
As a result of the link process, an executable program is created. To run this program, we have

to click the Run button (Ctrl + F10). Alternatively, we can find the executable program (.exe) in

the project folder and double-click on it.

NOTE: It is possible to compile and run the program in a single step by clicking the Compile &

Run button (F9).

Exercise 3. Change the HelloWorld program to introduce a compilation error; for instance, we

can mistype the printf function or remove one of the double-quote marks in the character

string. Compile and run the program (use the Compile & Run button). Check the error

messages.

2.6 Fixing execution errors
Developing a syntactically-correct program does not implies that it performs the required

procedures. Complex programs are error-prone and usually the logic implemented in the

source code does not lead to the expected behavior. These errors are named execution or

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es_ES

Programming Grade in Industrial Technology Engineering

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

runtime errors, since they are detected when the program is running. Therefore, it may be

necessary to change the source code and repeat the compilation and link procedure.

The IDE includes a debugger, which is a supporting tool to find runtime errors. To use the

debugger, it is necessary to modify the compiler options to include debugging information in

the object and the executable files (Tools > Compiler Options > Compiler). This is done by

adding the –g parameter to the calls to the compiler and the linker.

Figure 9. Compiler options for activating the debugger

When the program is compiled and link with these options, we can run the program in debug

mode by clicking on the Debug button (F8). This mode allows running the program step by

step (instructions are executed one-by-one), stopping the execution at breakpoints, or watch

the value of a variable at any time of the execution.

Breakpoints

To create a breakpoint, we can (alternatively): (a) select the line of the code and type Ctrl+F5;

(b) right-click on the line and select Toggle Breakpoint; (c) click on the gray vertical bar on the

left of the code. The instruction will be highlighted in red.

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es_ES

Programming Grade in Industrial Technology Engineering

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

Figure 10. Setting a breakpoint

Figure 11. Pausing the program at a breakpoint

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es_ES

Programming Grade in Industrial Technology Engineering

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

When the program runs in Debug mode (F8), the execution is paused at this line. From this

point, the execution can continue normally or step by step. The current instruction is

highlighted in blue.

The Debug tab of the Results window shows the debugging commands of Dev-C++. As depicted

in the following picture, it is possible to continue the execution, run the program step by step,

run to the cursor, etc.

Figure 12. Debug mode options to run a program

NOTE: It is possible to start the execution of a program in Debug mode without defining any

breakpoint by using Run to Cursor.

Exercise 4. Modify the HelloWorld program by adding two additional printing instructions.

Toggle a breakpoint in the first one of them. Run the program in debug mode and check that

the execution is stopped at the breakpoint. Continue the execution step by step. Check that

the printings are performed after the execution of the instructions.

Watches

The Debug mode allows us to consult or watch the value of a variable at any time during the

execution of the program. To watch a variable, the program must be stopped (with a

breakpoint or after using Run to Cursor). In this situation, we can select Add Watch in the

Debug tab (alternatively, F4 or Debug > Add Watch) and type the variable. The values of the

watched variables are listed in the Debug tab of the File Explorer window; if these values are

changed in the program, the change is shown.

Exercise 5. Extend the HelloWorld with the code of the previous figure. Watch the value of the

integer variable n during the execution of the program.

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es_ES

Programming Grade in Industrial Technology Engineering

This work is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0

España License.

Figure 12. Watching variables in debug mode

2.7 Start over: create a new program
To create a new program, we have to repeat the steps 2.1-2.6 and create a new project, or

alternatively, replace the previous source code with the new code. We cannot have two files

with a main function in the same project. Therefore, it is convenient to create a different

project for each program.

Exercise 6. Develop a C program that asks the user for two integer values, multiplies them, and

prints the result on the screen. Add watches to all the variables of the program. Run the

program step by step and check how the values are changed by the instructions. What is the

value of the variables before reading them from the keyboard?

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es_ES

