Formal Languages and Automata Theory

Formal Languages and Automata Theory Exercises Languages and Formal Grammars Unit 4 - Part 2

Authors:

Araceli Sanchis de Miguel
Agapito Ledezma Espino
Jose A. Iglesias Martínez
Beatriz García Jiménez
Juan Manuel Alonso Weber

* Several exercises are based on the ones proposed in the following books:
- Enrique Alfonseca Cubero, Manuel Alfonseca Cubero, Roberto Moriyón Salomón. Teoría de autómatas y lenguajes formales. McGraw-Hill (2007).
- Manuel Alfonseca, Justo Sancho, Miguel Martínez Orga. Teoría de lenguajes, gramáticas y autómatas. Publicaciones R.A.E.C. (1997).
- Pedro Isasi, Paloma Martínez y Daniel Borrajo. Lenguajes, Gramáticas y Autómatas. Un enfoque práctico. Addison-Wesley (1997).

Formal Languages and Automata Theory

1. Given the grammar G:

$$
\begin{gathered}
\mathrm{G}=(\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, 0,1,2,3,4\},\{\mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{~J}\}, \mathrm{G}, \mathrm{P}), \\
\mathrm{P}=\{\mathrm{abcG}::=\mathrm{abcJ}, \mathrm{Gdef}::=\text { Idef, J::=10H01, } 2 \mathrm{H} 4::=234,2 \mathrm{H} 4::=24, \mathrm{I}::=1\}
\end{gathered}
$$

Determine its type in the Chomsky Hierarchy, and carry out the required modifications to obtain an equivalent grammar G^{\prime} of the most restricted type in this hierarchy (i.e., from type0 to type-1, from type-1 to type-2, or from type-2 to type-3).
2. Obtain an equivalent well-formed grammar for the following one:

$$
\begin{gathered}
G=(\{a, b, c, d\},\{X, Y, Z, O, P, Q, A\}, Z, P), \\
P=\{Z::=Z, Q::=O P, X::=a a, Z::=a X, Y::=a a, Z::=Y a, O::=b, Z::=a a a, P::=Q O, \\
Q::=d, P::=c, O::=P Q\}
\end{gathered}
$$

3. Given the following left-linear grammar G, obtain an equivalent right-linear G' grammar.

$$
\begin{gathered}
\mathrm{G}=(\{0,1\},\{\mathrm{A}, \mathrm{~S}\}, \mathrm{S}, \mathrm{P}) \\
\mathrm{P}=\{\mathrm{S}::=1 \mid \mathrm{A} 1 ; \mathrm{A}::=\mathrm{S} 0\}
\end{gathered}
$$

4. Obtain an equivalent grammar in Chomsky Normal Form (CNF) equivalent to the following one:

$$
\begin{aligned}
& \mathrm{G}=(\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\},\{\mathrm{S}, \mathrm{Q}, \mathrm{R}\}, \mathrm{S}, \mathrm{P}) \\
& \mathrm{P}=\left\{\begin{array}{l}
\mathrm{S}::=\mathrm{Rba} \mid \mathrm{Q} \\
\mathrm{Q}::=\mathrm{Qb} \mid \mathrm{b} \\
\\
\mathrm{R}::=\mathrm{cRQb} \mid \mathrm{cb}
\end{array}\right. \\
&\}
\end{aligned}
$$

Formal Languages and Automata Theory

5. Given the grammar G:

$$
\begin{aligned}
& \mathrm{G}=(\{\mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{z}, \mathrm{a}, \mathrm{~b}, \mathrm{~d}\},\{\mathrm{Y}, \mathrm{X}, \mathrm{E}, \mathrm{~A}, \mathrm{D}, \mathrm{I}, \mathrm{G}\}, \mathrm{A}, \mathrm{P}), \\
& \mathrm{P}=\left\{\begin{array}{l}
\mathrm{A}:=\mathrm{a} \\
\mathrm{E}::=\mathrm{b} \\
\mathrm{~A}::=\mathrm{azb} \\
\mathrm{~A}::=\mathrm{aX} \\
\mathrm{E}::=\mathrm{E} \\
\mathrm{G}::=\mathrm{g} \\
\mathrm{X}::=\mathrm{XE} \\
\mathrm{D}::=\mathrm{eI} \\
\mathrm{X}::=\mathrm{z} \\
\mathrm{Y}::=\mathrm{b} \\
\mathrm{I}::=\mathrm{fG} \\
\mathrm{X}::=\mathrm{Xb} \\
\mathrm{E}::=\mathrm{d}\}
\end{array},\right.
\end{aligned}
$$

a) Transform to CNF detailing the process followed.
b) Determine whether the words 'abz' y 'azdbb' are included in the language generated by G. If this is the case, generate a parse tree for the included words. If not, justify the not inclusion in the language.
6. Obtain a grammar in CNF equivalent to the following grammar:

$$
\begin{gathered}
\mathrm{G}=(\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\},\{\mathrm{S}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}), \mathrm{S}, \mathrm{P}) \\
\mathrm{P}=\left\{\begin{array}{l}
\mathrm{S}::=\mathrm{AaB}|\mathrm{Cbb}| \mathrm{B} \\
\mathrm{~A}::=\mathrm{Aa} \mid \mathrm{cD} \\
\mathrm{~B}::=\mathrm{a}|\mathrm{Ba}| \lambda \\
\mathrm{C}::=\mathrm{Sa}|\mathrm{a}| \mathrm{abB} \\
\mathrm{D}::=\mathrm{aaA} \\
\mathrm{E}::=\mathrm{aa}\}
\end{array}\right.
\end{gathered}
$$

7. [Exercise Exam September 1999] Given the grammar G, calculate an equivalent grammar in GNF.

$$
\mathrm{G}=(\{\mathrm{a}, \mathrm{~b}\},\{\mathrm{S}\}, \mathrm{S}, \mathrm{P}) \text {, where } \mathrm{P}=\{\mathrm{S}::=\mathrm{aSb}|\mathrm{SS}| \lambda\}
$$

8. Given the following grammar G, calculate an equivalent grammar in GNF.

$$
\begin{gathered}
\mathrm{G}=(\{0,1,2\},\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}, \mathrm{A}, \mathrm{P}), \\
\text { where } \mathrm{P}=\{\mathrm{A}::=\mathrm{CD}|\mathrm{~EB}| \lambda \\
\mathrm{B}::=\mathrm{BC} \mid 1 \\
\mathrm{C}::=2 \\
\mathrm{D}::=\mathrm{BC} \\
\mathrm{E}::=1\}
\end{gathered}
$$

Formal Languages and Automata Theory

9. Given the following grammar G, calculate an equivalent grammar in GNF.

$$
\begin{aligned}
& \mathrm{G}=(\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, 0,1\},\{\mathrm{S}, \mathrm{~A}, \mathrm{~B}\}, \mathrm{S}, \mathrm{P}), \\
& \mathrm{P}=\{ \mathrm{S} \rightarrow \mathrm{AaB} \mid \mathrm{AaC} \\
& \mathrm{~A} \rightarrow \mathrm{Ab}|\mathrm{Ac}| \mathrm{b} \mid \mathrm{c} \\
& \mathrm{~B} \rightarrow \mathrm{BdC} \mid 0 \\
& \mathrm{C}\rightarrow \mathrm{CeB} \mid 1\}
\end{aligned}
$$

10. [Exercise Exam September 1998] Design a grammar in Greibach Normal Form to generate mathematical expressions having the form:

$$
\text { number }+(\text { number } / \text { number })-\text { number } *(\text { number }+ \text { number })
$$

11. [Exercise Exam September 1997] Given an if sentence included in a high-level programming language with the following restrictions:

- There are only two instructions in each if sentence: the if part only consists of one sentence. The then part is the assignment of a number to a variable.
- Nested if sentences are allowed.
- The condition that is evaluated is a Boolean variable.
- Therefore, the set of terminal symbols set of the grammar must be:

$$
\Sigma_{\mathrm{T}}=\{i f, \text { then, else, }::=, \text { var, num, cond }\}
$$

Transform the obtained grammar into GNF.

