# Formal Languages and Automata Theory Exercises Regular Languages 

## Authors:

Araceli Sanchis de Miguel<br>Agapito Ledezma Espino<br>Jose A. Iglesias Martínez<br>Beatriz García Jiménez<br>Juan Manuel Alonso Weber

* Several exercises are based on the ones proposed in the following books:
- Enrique Alfonseca Cubero, Manuel Alfonseca Cubero, Roberto Moriyón Salomón. Teoría de autómatas y lenguajes formales. McGraw-Hill (2007).
- Manuel Alfonseca, Justo Sancho, Miguel Martínez Orga. Teoría de lenguajes, gramáticas y autómatas. Publicaciones R.A.E.C. (1997).
- Pedro Isasi, Paloma Martínez y Daniel Borrajo. Lenguajes, Gramáticas y Autómatas. Un enfoque práctico. Addison-Wesley (1997).


## Formal Languages and Automata Theory

1. Obtain the minimum DFA equivalent to each one of the following grammars describing the intermediate steps: $\mathbf{G} \rightarrow$ NFA $\rightarrow$ DFA $\rightarrow$ minimal DFA.

| $\text { a) } \begin{aligned} & \mathbf{G}_{\mathbf{A}}=\left(\{\mathbf{a}, \mathbf{b}, \mathbf{c}\},\{\mathbf{S}, \mathbf{A}, \mathbf{B}\}, \mathbf{S}, \mathbf{P}_{\mathrm{A}}\right) \\ & \mathbf{P}_{\mathrm{A}}=\{ \{::=\mathbf{a A}\|\mathbf{b B}\| \mathbf{c} \\ & \mathbf{A}::=\mathbf{a B}\|\mathbf{b}\| \mathbf{c A} \\ & \mathbf{B}::=\mathbf{a}\|\mathbf{b A}\| \mathbf{c} \\ &\} \end{aligned}$ | $\text { b) } \begin{aligned} & \mathbf{G}_{\mathrm{B}}=\left(\{\mathbf{a}, \mathbf{b}, \mathbf{c}\},\{\mathbf{S}, \mathrm{B}, \mathbf{C}, E\}, \mathbf{S}, \mathbf{P}_{\mathrm{B}}\right) \\ & \mathbf{P}_{\mathrm{B}}=\{\mathbf{S}::=\mathbf{a}\|\mathbf{a S}\| \mathbf{a B} \mid \mathbf{c C} \\ & \mathbf{C}::=\mathbf{c} \\ & \mathrm{B}::=\mathbf{b E} \mid \mathbf{b} \\ & \mathrm{E}::=\mathrm{bB} \mid \mathbf{b} \\ &\} \end{aligned}$ |
| :---: | :---: |
| c) $\begin{aligned} \mathbf{G}_{\mathrm{C}}= & \left(\{\mathbf{a}, \mathbf{b}, \mathbf{c}\},\{\mathbf{S}, \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\}, \mathbf{S}, \mathbf{P}_{\mathrm{C}}\right) \\ \mathbf{P}_{\mathrm{C}}=\{ & \mathbf{S}::=\mathbf{a A} \\ & \mathbf{A}::=\mathbf{a A}\|\mathbf{b B}\| \mathbf{a} \\ & \mathbf{B}::=\mathbf{b B}\|\mathbf{b C}\| \mathbf{b} \\ & \mathbf{C}::=\mathbf{b C}\|\mathbf{c D}\| \mathbf{b B} \\ & \mathbf{D}::=\mathbf{b C}\|\mathbf{b B}\| \mathbf{c C} \\ & \} \end{aligned}$ | d) |

## Solution:

Section a:

| NFA | DFA | Minimal DFA |
| :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{NFA}=(\{a, b, c\},\{\mathrm{Q}, \mathrm{Q} 1, \mathrm{Q} 2, \\ & \mathrm{Q} 3\}, \mathrm{f}, \mathrm{Q} 0, \mathrm{Q} 3) \\ & \\ & \mathrm{f}(\mathrm{Q} 0, \mathrm{a})=\mathrm{Q} 1 \\ & \mathrm{f}(\mathrm{Q} 0, b)=\mathrm{Q} 2 \\ & \mathrm{f}(\mathrm{Q} 0, \mathrm{c})=\mathrm{Q} 3 \\ & \mathrm{f}(\mathrm{Q} 1, \mathrm{a})=\mathrm{Q} 2 \\ & \mathrm{f}(\mathrm{Q} 1, \mathrm{~b})=\mathrm{Q} 3 \\ & \mathrm{f}(\mathrm{Q} 1, \mathrm{c})=\mathrm{Q} 1 \\ & \mathrm{f}(\mathrm{Q} 2, \mathrm{a})=\mathrm{Q} 3 \\ & \mathrm{f}(\mathrm{Q} 2, \mathrm{~b})=\mathrm{Q} 1 \\ & \mathrm{f}(\mathrm{Q} 2, \mathrm{c})=\mathrm{Q} 3 \end{aligned}$ | $\begin{aligned} & \mathrm{DFA}=(\{a, b, c\},\{Q 0, \mathrm{Q} 1, \mathrm{Q} 2, \\ & \mathrm{Q} 3, \mathrm{Q} 4\}, \mathrm{f}, \mathrm{Q} 0, \mathrm{Q} 3) \\ & \mathrm{f}(\mathrm{Q} 0, \mathrm{a})=\mathrm{Q} 1 \\ & \mathrm{f}(\mathrm{Q} 0, \mathrm{~b})=\mathrm{Q} 2 \\ & \mathrm{f}(\mathrm{Q} 0, \mathrm{c})=\mathrm{Q} 3 \\ & \mathrm{f}(\mathrm{Q} 1, \mathrm{a})=\mathrm{Q} 2 \\ & \mathrm{f}(\mathrm{Q} 1, \mathrm{~b})=\mathrm{Q} 3 \\ & \mathrm{f}(\mathrm{Q} 1, \mathrm{c})=\mathrm{Q} 1 \\ & \mathrm{f}(\mathrm{Q} 2, \mathrm{a})=\mathrm{Q} 3 \\ & \mathrm{f}(\mathrm{Q} 2, \mathrm{~b})=\mathrm{Q} 1 \\ & \mathrm{f}(\mathrm{Q} 2, \mathrm{c})=\mathrm{Q} 3 \\ & \mathrm{f}(\mathrm{Q} 3, \mathrm{a})=\mathrm{Q} 4 \\ & \mathrm{f}(\mathrm{Q} 3, b)=\mathrm{Q} 4 \\ & \mathrm{f}(\mathrm{Q} 3, \mathrm{c})=\mathrm{Q} 4 \\ & \mathrm{f}(\mathrm{Q} 4, \mathrm{a})=\mathrm{Q} 4 \\ & \mathrm{f}(\mathrm{Q} 4, \mathrm{~b})=\mathrm{Q} 4 \\ & \mathrm{f}(\mathrm{Q} 4, \mathrm{c})=\mathrm{Q} 4 \end{aligned}$ | Same DFA. |

## Formal Languages and Automata Theory

Section b:

| NFA | DFA | minimal DFA |
| :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{NFA}=(\{a, b, c\},\{Q 0, Q 1, Q 2, \\ & Q 3, Q 7\}, f, Q 0, Q 3) \\ & f(Q 0, a)=Q 0, Q 2, Q 3 \\ & f(Q 0, c)=Q 1 \\ & f(Q 1, c)=Q 3 \\ & f(Q 2, b)=Q 2, Q 3 \\ & f(Q 7, b)=Q 2, Q 3 \end{aligned}$ | $\begin{aligned} & D F A=(\{a, b, c\},\{Q 0, Q 1, Q 3, \\ & Q 4, Q 5, Q 6, Q 8\}, f, Q 0,\{Q 3, Q \\ & 4, Q 6, Q 8\}) \\ & f(Q 0, a)=Q 4 \\ & f(Q 0, b)=Q 5 \\ & f(Q 0, c)=Q 1 \\ & f(Q 1, a)=Q 5 \\ & f(Q 1, b)=Q 5 \\ & f(Q 1, c)=Q 3 \\ & f(Q 3, a)=Q 5 \\ & f(Q 3, b)=Q 5 \\ & f(Q 3, c)=Q 5 \\ & f(Q 4, a)=Q 4 \\ & f(Q 4, b)=Q 8 \\ & f(Q 4, c)=Q 1 \\ & f(Q 5, a)=Q 5 \\ & f(Q 5, b)=Q 5 \\ & f(Q 5, c)=Q 5 \\ & f(Q 6, a)=Q 5 \\ & f(Q 6, b)=Q 8 \\ & f(Q 6, c)=Q 5 \\ & f(Q 8, a)=Q 5 \\ & f(Q 8, b)=Q 6 \\ & f(Q 8, c)=Q 5 \end{aligned}$ | $\begin{aligned} & \mathrm{DFAmin}=(\{a, b, \mathrm{c}\},\{Q 0, \mathrm{Q}, \\ & \mathrm{Q} 3, \mathrm{Q} 4, \mathrm{Q}, \mathrm{Q} 9\}, \mathrm{f}, \mathrm{Q},\{\mathrm{Q} 3, \mathrm{Q} \\ & 4, \mathrm{Q} 9\}) \\ & \mathrm{f}(\mathrm{Q} 0, \mathrm{a})=\mathrm{Q} 4 \\ & \mathrm{f}(\mathrm{Q} 0, \mathrm{~b})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q} 0, \mathrm{c})=\mathrm{Q} 1 \\ & \mathrm{f}(\mathrm{Q} 1, \mathrm{a})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q}, \mathrm{~b})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q} 1, \mathrm{c})=\mathrm{Q} 3 \\ & \mathrm{f}(\mathrm{Q} 3, \mathrm{a})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q} 3, \mathrm{~b})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q} 3, \mathrm{c})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q} 4, \mathrm{a})=\mathrm{Q} 4 \\ & \mathrm{f}(\mathrm{Q} 4, \mathrm{~b})=\mathrm{Q} 9 \\ & \mathrm{f}(\mathrm{Q} 4, \mathrm{c})=\mathrm{Q} 1 \\ & \mathrm{f}(\mathrm{Q} 5, \mathrm{a})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q} 5, \mathrm{~b})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q} 5, \mathrm{c})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q} 9, \mathrm{a})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q} 9, \mathrm{~b})=\mathrm{Q} 9 \\ & \mathrm{f}(\mathrm{Q} 9, \mathrm{c})=\mathrm{Q} 5 \end{aligned}$ |

## Formal Languages and Automata Theory

Section c:

| NFA | DFA | Minimal DFA |
| :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{NFA}=(\{a, b, c\},\{Q 0, Q 1, Q 2, Q 3 \\ & , Q 4, Q 5\}, f, Q 0, Q 5) \\ & \text { f(Q0, a) }=\text { Q1 } \\ & \text { (Q1, a) }=\text { Q1,Q5 } \\ & \text { (Q1, b) }=\text { Q2 } \\ & \text { f(Q2, b) }=\text { Q2,Q3,Q5 } \\ & \text { f(Q3, b) }=\text { Q2,Q3 } \\ & \text { f(Q3, c) }=\text { Q4 } \\ & \text { f(Q4, b) }=\text { Q2,Q3 } \\ & \text { (Q4, c) }=\text { Q3 } \end{aligned}$ |  | $\begin{aligned} & \mathrm{DFAmin}=(\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\},\{\mathrm{Q} 0, \mathrm{Q} 1, \mathrm{Q} 2 \\ & \mathrm{Q} 6, \mathrm{Q} 7, \mathrm{Q}, \mathrm{Q} 9, \mathrm{Q} 10\}, \mathrm{f}, \mathrm{Q} 0,\{\mathrm{Q} \\ & 7, \mathrm{Q} 8\}) \\ & \mathrm{f}(\mathrm{Q} 0, \mathrm{a})=\mathrm{Q} 1 \\ & \mathrm{f}(\mathrm{Q} 0, \mathrm{~b})=\mathrm{Q} 6 \\ & \mathrm{f}(\mathrm{Q} 0, \mathrm{c})=\mathrm{Q} 6 \\ & \mathrm{f}(\mathrm{Q} 1, \mathrm{a})=\mathrm{Q} 7 \\ & \mathrm{f}(\mathrm{Q} 1, \mathrm{~b})=\mathrm{Q} 2 \\ & \mathrm{f}(\mathrm{Q} 1, \mathrm{c})=\mathrm{Q} 6 \\ & \mathrm{f}(\mathrm{Q} 7, \mathrm{a})=\mathrm{Q} 7 \\ & \mathrm{f}(\mathrm{Q} 7, \mathrm{~b})=\mathrm{Q} 2 \\ & \mathrm{f}(\mathrm{Q} 7, \mathrm{c})=\mathrm{Q} 6 \\ & \mathrm{f}(\mathrm{Q} 2, \mathrm{a})=\mathrm{Q} 6 \\ & \mathrm{f}(\mathrm{Q} 2, \mathrm{~b})=\mathrm{Q} 8 \\ & \mathrm{f}(\mathrm{Q} 2, \mathrm{c})=\mathrm{Q} 6 \\ & \mathrm{f}(\mathrm{Q} 8, \mathrm{a})=\mathrm{Q} 6 \\ & \mathrm{f}(\mathrm{Q} 8, \mathrm{~b})=\mathrm{Q} 8 \\ & \mathrm{f}(\mathrm{Q} 8, \mathrm{c})=\mathrm{Q} 10 \\ & \mathrm{f}(\mathrm{Q} 9, \mathrm{a})=\mathrm{Q} 6 \\ & \mathrm{f}(\mathrm{Q} 9, \mathrm{~b})=\mathrm{Q} 8 \\ & \mathrm{f}(\mathrm{Q} 9, \mathrm{c})=\mathrm{Q} 10 \\ & \mathrm{f}(\mathrm{Q} 6, \mathrm{a})=\mathrm{Q} 6 \\ & \mathrm{f}(\mathrm{Q} 6, b)=\mathrm{Q} 6 \\ & \mathrm{f}(\mathrm{Q} 6, \mathrm{c})=\mathrm{Q}) \\ & \mathrm{f}(\mathrm{Q} 10, \mathrm{a})=\mathrm{Q} 6 \\ & \mathrm{f}(\mathrm{Q} 10, \mathrm{~b})=\mathrm{Q} 9 \\ & \mathrm{f}(\mathrm{Q} 10, \mathrm{c})=\mathrm{Q} 10 \end{aligned}$ |

Section d:

| NFA | DFA | Minimal DFA |
| :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{NFA}=(\{\mathrm{c}, \mathrm{f}, \mathrm{~d}\},\{\mathrm{Q}, \mathrm{Q} 1, \mathrm{Q} 2, \mathrm{Q} 3 \\ & , \mathrm{Q} 4, \mathrm{Q}, \mathrm{Q} 6\}, \mathrm{f}, \mathrm{Q}, \mathrm{Q} 6) \\ & \mathrm{f}(\mathrm{Q} 0, \mathrm{c})=\mathrm{Q} 1, \mathrm{Q} 4 \\ & \mathrm{f}(\mathrm{Q} 0, \mathrm{f})=\mathrm{Q} 2, \mathrm{Q} 6 \\ & \mathrm{f}(\mathrm{Q} 1, \mathrm{c})=\mathrm{Q} 1 \\ & \mathrm{f}(\mathrm{Q} 1, \mathrm{f})=\mathrm{Q} 3 \\ & \mathrm{f}(\mathrm{Q} 1, \mathrm{~d})=\mathrm{Q} 4 \\ & \mathrm{f}(\mathrm{Q} 2, \mathrm{c})=\mathrm{Q} 0 \\ & \mathrm{f}(\mathrm{Q} 3, \mathrm{c})=\mathrm{Q} 3 \\ & \mathrm{f}(\mathrm{Q} 3, \mathrm{f})=\mathrm{Q} 3 \\ & \mathrm{f}(\mathrm{Q} 4, \mathrm{c})=\mathrm{Q} 4 \\ & \mathrm{f}(\mathrm{Q} 4, \mathrm{f})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q} 4, \mathrm{~d})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q} 5, \mathrm{c})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q} 5, \mathrm{f})=\mathrm{Q} 5 \end{aligned}$ | $\begin{aligned} & \mathrm{DFA}=(\{\mathrm{c}, \mathrm{f}, \mathrm{~d}\},\{\mathrm{Q}, \mathrm{Q} 5, \mathrm{Q} 7, \mathrm{Q} 8 \\ & , \mathrm{Q} 9, \mathrm{Q} 10, \mathrm{Q} 11\}, \mathrm{f}, \mathrm{Q} 0, \mathrm{Q} 8) \\ & \mathrm{f}(\mathrm{Q} 0, \mathrm{c})=\mathrm{Q} 7 \\ & \mathrm{f}(\mathrm{Q} 0, \mathrm{f})=\mathrm{Q} 8 \\ & \mathrm{f}(\mathrm{Q} 0, \mathrm{~d})=\mathrm{Q} 9 \\ & \mathrm{f}(\mathrm{Q} 7, \mathrm{c})=\mathrm{Q} 7 \\ & \mathrm{f}(\mathrm{Q} 7, \mathrm{f})=\mathrm{Q} 10 \\ & \mathrm{f}(\mathrm{Q} 7, \mathrm{~d})=\mathrm{Q} 11 \\ & \mathrm{f}(\mathrm{Q} 8, \mathrm{c})=\mathrm{Q} 0 \\ & \mathrm{f}(\mathrm{Q} 8, \mathrm{f})=\mathrm{Q} 9 \\ & \mathrm{f}(\mathrm{Q} 8, \mathrm{~d})=\mathrm{Q} 9 \\ & \mathrm{f}(\mathrm{Q} 10, \mathrm{c})=\mathrm{Q} 10 \\ & \mathrm{f}(\mathrm{Q} 10, \mathrm{f})=\mathrm{Q} 10 \\ & \mathrm{f}(\mathrm{Q} 10, \mathrm{~d})=\mathrm{Q} 9 \\ & \mathrm{f}(\mathrm{Q} 11, \mathrm{c})=\mathrm{Q} 11 \\ & \mathrm{f}(\mathrm{Q} 11, \mathrm{f})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q} 11, \mathrm{~d})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q} 5, \mathrm{c})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q} 5, \mathrm{f})=\mathrm{Q} 5 \\ & \mathrm{f}(\mathrm{Q} 5, \mathrm{~d})=\mathrm{Q} 9 \\ & \mathrm{f}(\mathrm{Q} 9, \mathrm{c})=\mathrm{Q} 9 \\ & \mathrm{f}(\mathrm{Q} 9, \mathrm{f})=\mathrm{Q} 9 \\ & \mathrm{f}(\mathrm{Q} 9, \mathrm{~d})=\mathrm{Q} 9 \end{aligned}$ | $\begin{aligned} & \text { DFAmin }=(\{\mathrm{c}, \mathrm{f}, \mathrm{~d}\},\{\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3 \\ & \}, \mathrm{f}, \mathrm{C} 3, \mathrm{C} 2) \\ & \mathrm{f}(\mathrm{C} 3, \mathrm{c})=\mathrm{C} 1 \\ & \mathrm{f}(\mathrm{C} 3, \mathrm{f})=\mathrm{C} 2 \\ & \mathrm{f}(\mathrm{C} 3, \mathrm{~d})=\mathrm{C} 1 \\ & \mathrm{f}(\mathrm{C} 1, \mathrm{c})=\mathrm{C} 1 \\ & \mathrm{f}(\mathrm{C} 1, \mathrm{f})=\mathrm{C} 1 \\ & \mathrm{f}(\mathrm{C} 1, \mathrm{~d})=\mathrm{C} 1 \\ & \mathrm{f}(\mathrm{C} 2, \mathrm{c})=\mathrm{C} 3 \\ & \mathrm{f}(\mathrm{C} 2, \mathrm{f})=\mathrm{C} 1 \\ & \mathrm{f}(\mathrm{C} 2, \mathrm{~d})=\mathrm{C} 1 \end{aligned}$ |

## Formal Languages and Automata Theory

2. Given the alphabet $\{\mathrm{a}, \mathrm{b}\}$, construct a DFA which recognizes string with length " 3 " of the universal language. Obtain the G3 corresponding to this automaton.

## Solution:

|  |  |
| :---: | :---: |
| $S::=a A \mid b A$ | Gramática Bien Formada |
| $A::=a B \mid b B$ | $S::=a A \mid b A$ |
| $B::=a C \mid b C$ | $A::=a B \mid b B$ |
| $B::=a \mid b$ | $B::=a \mid b$ |
| $C::=a D \\| b D$ |  |
| $D::=a D \mid b D$ |  |

3. We have a door with only one lock. To open it, it is necessary to use three different keys (called a,b, and $c$ ), in a predefined order, which is following described:

- Key a, then key b, then key c, or
- Key b, then key a, then key c.

If this order is not followed, then the lock is blocked (for instance, if the key a is used and following it is introduced again).
Once the door is open, the introduction of keys in the lock (in every possible order) does not affect the closing device (i.e. the door remains open).
Consider that the names of the different keys are symbols of an alphabet, over which a language $L$ whose words are the valid sequences for the opening of the door is defined. For instance, abcbc is a word included in the language. It is required:
a) Design a finite automata FA which accepts $L$.
b) Well-formed Grammar which generates words in $L$

## Formal Languages and Automata Theory

## Solution:



$$
\begin{aligned}
& \mathrm{G}=(\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\},\{\mathrm{S}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}, \mathrm{S}, \mathrm{P}) \\
& \mathrm{P}=\{ \mathrm{S}::=\mathrm{aA} \mid \mathrm{bC} \\
& \mathrm{~A}::=\mathrm{bD} \\
& \mathrm{C}::=\mathrm{aD} \\
& \mathrm{D}::=\mathrm{cE} \mid \mathrm{c} \\
& \mathrm{E}::=\mathrm{aE}|\mathrm{bE}| \mathrm{cE}|\mathrm{a}| \mathrm{b} \mid \mathrm{c}
\end{aligned}
$$

4. Given the RE (b•a*)*, which represents a regular language, construct a FA accepting this regular language

## Solution:

$\mathrm{R}=(\mathrm{ba})^{*}$

| $\mathrm{D}_{\mathrm{a}}(\mathrm{R})$ | $=$ $=$ $=$ | $\begin{aligned} & \mathrm{D}_{\mathrm{a}}\left(\left(\mathrm{ba} \mathrm{a}^{*}\right)^{*}=\mathrm{D}_{\mathrm{a}}\left(\mathrm{ba} \mathrm{a}^{*}\right)\left(\mathrm{ba} \mathrm{a}^{*}\right)^{*}\right. \\ & \left(\mathrm{B}_{\mathrm{a}}(\mathrm{~b}) \mathrm{a}^{*}+\delta(\mathrm{b}) \mathrm{D}_{\mathrm{a}}\left(\mathrm{a}^{*}\right)\right)\left(\mathrm{ba} a^{*}\right)^{*} \\ & \left(\phi \mathrm{a}^{*}+\phi \mathrm{D}_{\mathrm{a}}\left(\mathrm{a}^{*}\right)\right)\left(\mathrm{ba} \mathrm{a}^{*}\right)^{*} \end{aligned}$ |  | = | $\phi$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{D}_{\mathrm{b}}(\mathrm{R})$ | $=$ $=$ $=$ | $\begin{aligned} & \mathrm{D}_{\mathrm{b}}\left((\mathrm{ba})^{*}\right)=\mathrm{D}_{\mathrm{b}}\left(\mathrm{ba}^{*}\right)\left(\mathrm{ba}^{*}\right)^{*} \\ & \left(\mathrm{D}_{\mathrm{b}}(\mathrm{~b}) \mathrm{a}^{*}+\delta(\mathrm{b}) \mathrm{D}_{\mathrm{b}}\left(\mathrm{a}^{*}\right)\right)\left(\mathrm{ba}^{*}\right)^{*} \\ & \left(\lambda \mathrm{a}^{*}+\phi \mathrm{D}_{\mathrm{b}}\left(\mathrm{a}^{*}\right)\right)\left(\mathrm{ba} \mathrm{a}^{*}\right)^{*}= \end{aligned}$ | a*(ba*)* | $=$ | R1 |
| $\mathrm{D}_{\mathrm{a}}(\mathrm{R} 1)$ | $=$ $=$ $=$ $=$ | $\begin{aligned} & \mathrm{D}_{\mathrm{a}}\left(\mathrm{a}^{*}\left(\mathrm{ba}^{*}\right)^{*}\right) \\ & \mathrm{D}_{\mathrm{a}}\left(\mathrm{a}^{*}\right)\left(\mathrm{ba}^{*}\right)^{*}+\delta\left(\mathrm{a}^{*}\right) \mathrm{D}_{\mathrm{a}}\left(\left(\mathrm{ba}^{*}\right)^{*}\right) \\ & \mathrm{D}_{\mathrm{a}}\left(\mathrm{a} \mathrm{a}^{*}\left(\mathrm{ba}^{*}\right)^{*}+\lambda \mathrm{B}_{\mathrm{a}(\mathrm{R})}\right. \\ & \lambda \mathrm{a}^{*}\left(\mathrm{ba}^{*}\right)^{*}+\lambda \phi= \end{aligned}$ | $\mathrm{a}^{*}(\mathrm{ba*})^{*}$ | = | R1 |
| $\mathrm{D}_{\mathrm{b}}(\mathrm{R} 1)$ | $=$ $=$ $=$ | $\begin{aligned} & \mathrm{D}_{\mathrm{b}}\left(\mathrm{a}^{*}\left(\mathrm{ba}^{*}\right)^{*}\right) \\ & \mathrm{D}_{\mathrm{b}}\left(\mathrm{a}^{*}\right)\left(\mathrm{ba} \mathrm{a}^{*}\right)^{*}+\delta\left(\mathrm{a}^{*}\right) \mathrm{D}_{\mathrm{b}}\left(\left(\mathrm{ba} \mathrm{ba}^{*}\right)^{*}\right) \\ & \phi\left(\mathrm{ba}^{*}\right)^{*}+\lambda \mathrm{D}_{\mathrm{b}}(\mathrm{R})= \end{aligned}$ | $\phi+\mathrm{R} 1$ | = | R1 |

## Formal Languages and Automata Theory

$$
\mathbf{R}=\left(\mathbf{b a}^{*}\right)^{*} \quad \mathbf{R} 1=\mathbf{a}^{*}\left(\mathbf{b a}^{*}\right)^{*}
$$

| $\mathrm{D}_{\mathrm{a}}(\mathrm{R})$ | = | $\phi$ | $\delta\left(\mathrm{D}_{\mathrm{a}}(\mathrm{R})\right.$ ) | $=\delta(\phi)$ |  | $\phi$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{D}_{\mathrm{b}}(\mathrm{R})$ | = | R1 | $\delta\left(\mathrm{D}_{\mathrm{b}}(\mathrm{R})\right.$ ) | $=\delta(\mathrm{R} 1)=$ | $\left.\delta\left(\mathrm{a}^{*}\left(\mathrm{ba}{ }^{*}\right)^{*}\right)\right)$ | $\lambda$ |
| $\mathrm{D}_{\mathrm{a}}(\mathrm{R} 1)$ | = | R1 | $\delta\left(\mathrm{D}_{\mathrm{a}}(\mathrm{R} 1)\right.$ ) | $=\delta(\mathrm{R} 1)=$ | $\left.\delta\left(\mathrm{a}^{*}(\mathrm{ba*})^{*}\right)\right)$ | $\lambda$ |
| $\mathrm{D}_{\mathrm{b}}(\mathrm{R} 1)$ | = | R1 | $\delta\left(\mathrm{D}_{\mathrm{b}}(\mathrm{R} 1)\right.$ ) | $=\delta(\mathrm{R} 1)=$ | $\left.\delta\left(\mathrm{a}^{*}(\mathrm{ba*})^{*}\right)\right)$ | $=\lambda$ |


5. Determine the language recognized by the following automaton. To do this, use the characteristic equations.


## Solution:

$$
\begin{aligned}
& \mathrm{X} 0=\mathrm{aX} 4+\mathrm{bX} 1 \\
& \mathrm{X} 1=\mathrm{aX} 0+\mathrm{bX} 2+\mathrm{b}+\mathrm{aX} 3 \\
& \mathrm{X} 2=\mathrm{aX} 1+\mathrm{aX} 2+\mathrm{a} \\
& \mathrm{X} 3=\mathrm{bX} 1 \\
& \mathrm{X} 4=\mathrm{bX} 0
\end{aligned}
$$

$$
\mathbf{X 0}=(\mathbf{a b})^{*} \mathbf{b}(\mathbf{a b})^{*} \mathbf{b}(\mathbf{a b})^{*} \mathbf{a}^{*}
$$

6. Given the following right-linear grammar, $G=(\{0,1\},\{S, A, B, C\}, S, P)$, where $P=\{S::=1 A \mid 1 B, A::=0 A$ $|0 \mathrm{C}| 1 \mathrm{C}|1, \mathrm{~B}::=1 \mathrm{~A}| 1 \mathrm{C} \mid 1, \mathrm{C}::=1\}$. Calculate formally the RE of the language associated to this grammar.

## Solution:

$E R=(\lambda+1)(10 *(01+11+1))+111+11$

## Formal Languages and Automata Theory

7. Simplify the following regular expression: $\alpha=a+a(b+a a)(b * a a) * b^{*}+a(a a+b) *$ by using the equivalence properties of the regular expressions.

## Solution:

$$
\alpha=\mathrm{a}(\mathrm{aa}+\mathrm{b})^{*}+\mathrm{a}(\mathrm{aa}+\mathrm{b})^{*}=\mathrm{a}(\mathrm{aa}+\mathrm{b})^{*}
$$

8. Calculate the derivative $D_{a b}(\alpha)$ where $\alpha=a * a b$, using the definitions of the derivatives of regular expressions.

## Solution:

$D_{a b}(a * a b)=\lambda$
9. Obtain the grammar for the regular expression $a(a a+b)^{*}$.

## Solution:

$\mathrm{R}_{0}=\mathrm{a}(\mathrm{aa}+\mathrm{b})^{*}$
$\mathrm{R}_{1}=(\mathrm{aa}+\mathrm{b})^{*}$

| $\mathrm{D}_{\mathrm{a}}\left(\mathrm{R}_{0}\right)=\mathrm{R}_{1}$ | $\mathrm{R}_{0}::=\mathrm{aR}_{1}$ | $\delta\left(\mathrm{D}_{\mathrm{a}}\left(\mathrm{R}_{0}\right)\right)=\lambda$ | $\mathrm{R}_{0}::=\mathrm{a}$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{D}_{\mathrm{b}}\left(\mathrm{R}_{0}\right)=\phi$ |  |  |  |
| $\mathrm{D}_{\mathrm{a}}\left(\mathrm{R}_{1}\right)=\mathrm{R} 0$ | $\mathrm{R}_{1}::=\mathrm{aR}_{0}$ | $\delta\left(\mathrm{D}_{\mathrm{a}}\left(\mathrm{R}_{1}\right)\right)=\phi$ |  |
| $\mathrm{D}_{\mathrm{b}}\left(\mathrm{R}_{1}\right)=\mathrm{R}_{1}$ | $\mathrm{R}_{1}::=\mathrm{bR} \mathrm{R}_{1}$ | $\delta\left(\mathrm{D}_{\mathrm{b}}\left(\mathrm{R}_{1}\right)\right)=\lambda$ | $\mathrm{R}_{1}::=\mathrm{b}$ |

$$
\begin{aligned}
& \mathrm{G}=\left(\{\mathrm{a}, \mathrm{~b}\},\left\{\mathrm{R}_{0}, \mathrm{R}_{1}\right\}, \mathrm{R}_{0}, \mathrm{P}\right) \\
& \mathrm{P}=\left\{\begin{array}{l} 
\\
\\
\\
\\
\\
\mathrm{R}_{0}::=\mathrm{aR}_{1} \mid \mathrm{a} \\
\mathrm{R}_{1}::=\mathrm{aR}_{0} \\
\\
\mathrm{R}_{1}::=\mathrm{bR}_{1} \mid \mathrm{R}_{1}::=\mathrm{b}
\end{array}\right.
\end{aligned}
$$



## Formal Languages and Automata Theory

10. Given the following regular expression $a^{*} c^{*}(a+b)(c b)^{*}$, construct formally an equivalent regular grammar.
$\mathrm{R}_{0}=\mathrm{a}^{*} \mathrm{c}^{*}(\mathrm{a}+\mathrm{b})(\mathrm{cb})^{*}$
$\mathrm{R}_{1}=\mathrm{a}^{*} \mathrm{c}^{*}(\mathrm{a}+\mathrm{b})(\mathrm{cb})^{*}+(\mathrm{cb})^{*}$
$\mathrm{R}_{2}=(\mathrm{cb})^{*}$
$\mathrm{R}_{3}=\mathrm{c}^{*}(\mathrm{a}+\mathrm{b})(\mathrm{cb})^{*}$
$\mathrm{R}_{4}=\mathrm{b}(\mathrm{cb})^{*}$
$\mathrm{R}_{0} \rightarrow \mathrm{aR}_{1}|\mathrm{a}| \mathrm{bR}_{2}|\mathrm{~b}| c \mathrm{R}_{3}$
$\mathrm{R}_{1} \rightarrow \mathrm{aR}_{1}|\mathrm{a}| \mathrm{bR} \mathrm{R}_{2}|\mathrm{~b}| c \mathrm{R}_{3}$
$\mathrm{R}_{2} \rightarrow \mathrm{cR}_{4}$
$\mathrm{R}_{3} \rightarrow \mathrm{aR}_{2}|\mathrm{a}| \mathrm{bR} \mathrm{R}_{2}|\mathrm{~b}| c \mathrm{R}_{3}$ $\mathrm{R}_{4} \rightarrow \mathrm{bR}_{2} \mid \mathrm{b}$

