Formal Languages and Automata Theory Exercises Turing Machines Unit 7

Authors:
Araceli Sanchis de Miguel
Agapito Ledezma Espino
Jose A. Iglesias Martínez
Beatriz García Jiménez
Juan Manuel Alonso Weber

* Several exercises are based on the ones proposed in the following books:
- Enrique Alfonseca Cubero, Manuel Alfonseca Cubero, Roberto Moriyón Salomón. Teoría de autómatas y lenguajes formales. McGraw-Hill (2007).
- Manuel Alfonseca, Justo Sancho, Miguel Martínez Orga. Teoría de lenguajes, gramáticas y autómatas. Publicaciones R.A.E.C. (1997).
- Pedro Isasi, Paloma Martínez y Daniel Borrajo. Lenguajes, Gramáticas y Autómatas. Un enfoque práctico. Addison-Wesley (1997).

Formal Languages and Automata Theory

1. Design a Turing Machine to replace 0 's with 1 's in the input string.
2. Design a Turing Machine to calculate the 1 -complement of a binary number (i.e. replace 0 's with 1 's and 1 's with 0 's).
3. Design a Turing Machine to obtain the successor of a number in unary codification. Consider that the unary representation of 0 is the empty string, 1 is represented by 1,2 is represented by 11 , etc.
4. Design a Turing Machine to obtain the predecessor of a number in unary codification. Consider the same representation described in the previous exercise.
5. Design a Turing Machine to calculate the parity of a binary number, i.e. add a 0 at the end if the number of 1 's in the input string is even or a 1 is this number is odd.
6. Design a Turing Machine to be a unary counter of characters in the language with alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, i.e., the machine must generate as 1 's as output as characters in the input word. Consider the same representation for 0 defined in the exercise 3 .
7. Design a Turing Machine to generate a copy of a string with symbols $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$. For instance, given the input "bAABCAb", the resulting input tape would be "bAABCAAABCAb", where b represents the blank symbol.
8. Design a Turing Machine which takes a input string with $M 1$'s and N A's $(M \leq N)$, and replaces the M first A's with B's. For instance, given the input "b11AAAAAb" it would generate the input tape "b11BBAAAb", where b represents the blank symbol (i.e., empty cells in the tape).
9. Design a Turing Machine which takes two input words generated with the alphabet $\{0,1,2\}$ separated using the symbol $\{\#\}$, and verifies whether they are the same. For instance, given the input b2101\#2101b the Turing Machine would inform that both words are the same, where b represents empty cells in the tape.
10. Design a Turing Machine to recognize the language $L=a^{n} b^{n}$.
11. Design a Turing Machine to recognize the language $L=a^{n} b^{n} c^{n}$.
12. Design a Turing Machine which obtains the successor of a binary number.
13. Design a Turing Machine which obtains the predecessor of a binary number.
14. Design a Turing Machine which translates a 1's sequence in unary codification to its equivalent binary codification (0 's and 1's).
