UNIVERSIDAD CARLOS III DE MADRID

FORMAL LANGUAGES AND AUTOMATA THEORY GRADO EN INGENIERÍA INFORMÁTICA.

Final Exam – January 2011-12 17th January 2012

Problem 1 (1 point)

Given the alphabet $\Sigma = \{a,b,c,d\}$ and the regular expression: $\alpha = a + ab + a (b+c)*$ Calculate the following derivatives:

D_a(α)

• $\delta(D_a(\alpha))$

D_b(α)

δ(D_b(α))

D_c(α)

δ(D_c(α))

• Given $\beta = D_a(\alpha)$, obtain $D_b(\beta)$

Problem 2 (2 points)

We want to design a device for a diving chronometer that prevents its involuntary use. The device includes three buttons: a, b and c.

The button a moves the pointer 10 minutes forward; the button b moves the pointer 20 minutes forward, and the c, 30 minutes.

To start the chronometer it is necessary to complete 60 minutes by means of pressing 3 buttons (the same or not) from the initial state (0 minutes).

It is required:

- a. Construct a <u>Finite Automata</u> that indicates that the pointer has been moved 60 minutes forward by pressing 3 buttons. Explain in detail.
- Obtain a grammar corresponding to the language accepted by the previous automaton, expressed in Chomsky Normal Form. Explain in detail.

Note: It is not required to define drain states into the designed FA.

Problem 3 (2 points)

Construct a Push-Down Automaton by empty stack to recognize the language L:

 $L = \{ ZZ^{-1} / Z = (a+b+c)^* \}$ where Z^{-1} represents the opposite order of the element in the expression Z.

(Example, the words abccba, baab, and cc are included in the language).

- Describe formally the PDA_E, also detailing if it is a deterministic or a nondeterministic automaton and the reasons why.
- Explain which is the shortest word accepted and show the acceptance of a word in L with length equal to 4.
- Transform the PDA_E into an equivalent PDA_F, also showing the acceptance of the same word of the previous section by the latter automaton.

Problem 4 (2 points)

Construct a Turing Machine to enumerate the complete set of binary numbers in the tape. A blank symbol (\square) must be used as a separator between each one of the numbers. The Turing Machine begins with a 0 in the tape and completes the list of numbers from right to left, i.e., the contents in the tape will be the following successively:

where \(\precedef \) represents an empty cell in the tape.

The designed TM must be explained in detail.

Note: The operation of the TM could be considered as follows:

- 1. Copy the current number at the left.
- 2. Increase this number by one unit.
- Repeat the process.