

## Duration of the exam: 45 minutes TEST + 2 hours PROBLEMS Maximum mark: 5 POINTS

## **PROBLEM 1:** Maximum mark 1.25 points.

Obtain formally, applying the method of the derivates of regular expressions, the right-linear Type-3 grammar (G3RL) that generates the language described by the regular expression  $R_{0}$ .

$$R_0 = (a + b)^* b (\lambda + a)$$

Explain, using examples of words with length 1, 2 and 3, how these words are represented by the RE and generated by the equivalent G3RL.

## **PROBLEM 2:** Maximum mark 1.25 points.

We want to develop a system for detecting errors in the transmission of words over the alphabet  $S = \{a, b, c\}$  and included in the language  $L_1 = S^+$ . To do this, the  $L_2$  language is generated by adding a sequence of bits to the words in  $L_1$  (so many bits as transmitted symbols). The added bits indicate whether the current symbol is equal to previous one or not in the words of  $L_1$ . 0 is used to indicate that the current symbol is equal to the previous one, and 1 to indicate that there is a change. The transmission of the first symbol is always corresponded with a 0. The sequence of bits will be interpreted reading it from right to left, in opposite order to the sequence of corresponding letters of the message.

Example: caabcc011010

|              | Word in L <sub>2</sub> |   |   |   |   |   |              |   |   |    |    |    |
|--------------|------------------------|---|---|---|---|---|--------------|---|---|----|----|----|
|              | transmitted symbol     |   |   |   |   |   | Control bits |   |   |    |    |    |
|              | С                      | а | а | b | С | С | 0            | 1 | 1 | 0  | 1  | 0  |
| Order in the | 1                      | 2 | 3 | 4 | 5 | 6 | 7            | 8 | 9 | 10 | 11 | 12 |
| transmission |                        |   |   |   |   |   |              |   |   |    |    |    |

The symbol c (number 1) is not interpreted as a change; therefore, the bit 12 is a 0

The symbol a (number 2) supposes a change with respect to the previous one; then, the bit 11 is a 1 The symbol a (number 3) is not a change with respect to the previous one; then, the bit 10 is a 0 The symbol b (number 4) supposes a change with respect to the previous one; then, the bit 9 is a 1 The symbol c (number 5) supposes a change with respect to the previous one; then, the bit 8 is a 1 The symbol c (number 5) supposes a change with respect to the previous one; then, the bit 8 is a 1 The symbol c (number 6) does not change with respect to the previous one; then, the bit 7 is a 0.

Design, from the L2 grammar, an automaton to recognize this language.

## **PROBLEM 3**: Maximum mark 1.25 points.

Design a Turing Machine to order, from lowest to highest, two natural numbers in unary code separated by the symbol #. The tape initially contains *number1#number2*, and it will provide *LowestNumber#HighestNumber*. It is mandatory to place the header in the first digit of the smallest number once the result is provided.

For example, the input 1111#11 generates the output 11#1111; and the input 11#1111 generates the output 11#1111. It is required:

- a) Detailed description of the algorithm implemented by the Turing Machine.
- b) Formal definition with the seven elements of the Turing Machine. Include the transition diagram (not the list, nor the table of the transition function).
- c) Explain the meaning of:
  - each symbol of the alphabet of the tape not defined in this wording,
  - each one of the states and transitions, or group of states and transitions.