

UNIVERSIDAD CARLOS III DE MADRID
FORMAL LANGUAGES AND AUTOMATA THEORY
COMPUTER SCIENCE DEGREE. CONTINUOUS ASSESSMENT - PARTIAL 2
Last name(s):
First name:
NIA:

Duration: 45 minutes

1. Indicate whether the following statements are true or false.

Correct Answer:+0.3 Wrong Answer:-0.3 No answer =0
Minimum Mark: 0 Maximum Mark: 3 points

	True	False
In a grammar, the word λ can be included in the set of terminal symbols.		
A sentential form can include nonterminal symbols.		
There is an algorithm to determine whether a grammar is ambiguous or not.		
A::=aB is a rule in CNF.		
For every Type-1 grammar it is possible to find an equivalent Push-Down Automaton.		
Type-2 languages are also called context-free languages.		
Every type-2 grammar is also a type-3 grammar.		
If the number of sentences of a Language is infinite, then the grammar is recursive.		
Every grammar is GNF is a Type-3 grammar.		
S→AbbB→BaA is a derivation of order 3.		

2. Indicate whether the following statements are true or false.

Correct Answer:+0.3 Wrong Answer:-0.3 No answer =0
Minimum Mark: 0 Maximum Mark: 3 points

	True	False
Given a grammar (Σ ={0,1}) with the following production rules		
{ $S ::= A \ 1 \ 0 \ B \ \ 0$, $A ::= A \ 1 \ \ 1$, $B ::= \lambda \ \ 0 \ S$ }, it is a Type-3 grammar.		
The grammar with axiom S and production rules P={S::=B0; B::=1 C1; C::=B2; D::=S1} is a recursive grammar.		
Given a grammar (G = { {0,1},{S,A,B},S, P}) with the following production rules P = { S ::= 1 S 1 A 0 B 0 λ , A ::= 1 A 1, B ::= λ 0 B}, it can be transformed into a Type-3 left-linear grammar.		
A::=A is a unit production or redenomination rule		
The production rule AaC ::= AbabC, does not retain the context.		
Given the grammar, $G=(\{a,b\},\{A,B,C,S\},S,P=\{S::=aA;A::=aA\mid bB;B::=bB\mid b;\},$), aabb is a sentence of the language.		
CcdEA::=CCEb is a valid rule for a Type-1 grammar.		
Every Type-3 grammar has an equivalent NON-Deterministic FA.		
Every Type-3 grammar has an equivalent Deterministic FA.		
Given a grammar (G = { {0,1},{S,A,B},S, P}) with the following production rules P = { S ::= 1 S 1 A 0 B 0 λ , A ::= 1 A 1, B ::= λ 0 B}, if the grammar is cleaned and becomes well-formed, then it would be a type-3 right-linear grammar.		

3. (4 points) Given the grammar $G = (\{0, 1, 2\}, \{S, A, B, C, D, E\}, S, P)$

$$P = \{(S ::= AABC), (A ::= \lambda \mid 1A0), (B ::= 1B \mid 1), (C ::= 1C1 \mid 0C0 \mid \ \lambda \), (D ::= 0)\}$$

- a) Which is the type of grammar in the Chomsky Hierarchy?
- b) Obtain an equivalent grammar in GNF. Explain in detail the process that you have followed.