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1. (3.5 points) Given the following Finite Automaton 

 

 
 

a. Is this a DFA or a NFA? Explain in detail. 

It is a DFA given that: 

- For every pair (state, input symbol) there is only one possible transition. 

- There are not λ-transitions. 

 

b. Construct the minimal equivalent DFA. Explain in detail. 

We have to apply the algorithm related to equivalence classes. Q/E0 is calculated 

by creating a class with final states and a second class with non-final states: 

C0 = {q4} 

C1 = {q0, q1, q2, q3} 

Q/E1 

We take the class C1, given that the class C0 just contains one state. 

f(q0, a) = q1         f(q1, a) = q1        f(q2, a) = q1      f(q3, a) = q1 

f(q0, b) = q2         f(q1, b) = q3        f(q2, b) = q2      f(q3, b) = q4 
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Then, we can conclude that {q0, q1, q2} are equivalent states and a new class has 

to be created for q4: 

C0 = {q4} 

C1 = {q0, q1, q2} 

C2= {q3} 

Q/E2 

We take again the class C1, given that the classes C0 and C2 just contain one state. 

f(q0, a) = q1         f(q1, a) = q1        f(q2, a) = q1 

f(q0, b) = q2         f(q1, b) = q3        f(q2, b) = q2 

Then, we can conclude that {q0, q2} are equivalent states and a new class has to 

be created for q1: 

C0 = {q4} 

C1 = {q0, q2} 

C2= {q3} 

C3 = {q1} 

Q/E3 

We take again the class C1, given that the classes C0, C2 and C3 just contain one 

state. 

f(q0, a) = q1         f(q2, a) = q1 

f(q0, b) = q2         f(q2, b) = q2 

Then, we can conclude that {q0, q2} are equivalent states and: 

Q /E3 = Q/E2 = Q/ E 

The minimal DFA is as follows: 
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c. Which is the language that is recognized? Explain in detail. 

The words that are accepted by this FA can be expressed by means of the 

following mathematical expression: 

(bnaanb(aanb)nb(aanb(aanb)nb)nb)nbnaanb(aanb)nb(aanb(aanb)nb)n  n≥0 

 

 

2. (3.5 points) Given the input alphabet {0,1}: 

a. Construct a NFA to recognize words having the form X0ZY where: 

 X and Y are every possible combination of 0’s and/or 1’s (λ included). 

 Z is a word which consists of one or more ‘01’ subwords (at least 

one). 

A valid NFA to recognize the words described by the restrictions of the problem is as 

follows: 

 

b. Construct an equivalent DFA. Explain in detail. 

We apply the algorithm based on λ-closure to calculate an equivalent DFA. The initial 

state of the equivalent DFA can be calculated as follows: 

A = λ-closure{q0} = {q0}  

 

We have the following transitions from q0 in the NFA: 

 

q0  {q0,q1}     with 0 

q0  q0              with 1 
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This implies the following transitions from the state A of the equivalent DFA: 

 

A   λ-closure{q0,q1} = {q0,q1} = B     with 0 

A   λ-closure{q0 } = {q0} = A              with 1 

 

Now we have to calculate transitions from the new state B in the DFA. In the initial 

NFA we have the following transitions from the states {q0, q1}: 

 

q0  {q0,q1}     q1  {q2}     with 0 

q0  q0                                      with 1 

 

This implies the following transitions from the state B of the equivalent DFA: 

 

B   λ-closure{q0,q1} = {q0,q1,q2} = C  with 0 

B   λ-closure{q0 } = {q0} = A                 with 1 

 

We have to repeat to calculate now transitions from the new state C in the DFA. In the 

initial NFA we have the following transitions from the states {q0, q1, q2}: 

 

q0  {q0,q1}     q1  {q2}     with 0 

q0  q0              q2  q3         with 1 

 

This implies the following transitions from the state C of the equivalent DFA: 

 

C   λ-closure{q0, q1, q2} = {q0,q1,q2} = C   with 0 

C   λ-closure{q0, q3} = {q0,q3} = D              with 1 

We repeat the process with the new state D: 

D   λ-closure{q0, q1, q2, q3} = {q0, q1, q2,q3} = E   with 0 

D   λ-closure{q0, q3} = {q0,q3} = D                           with 1  

Finally, we calculate the transitions for the state E: 

E   λ-closure{q0, q1, q2, q3} = {q0, q1, q2,q3} = E   with 0 

E   λ-closure{q0, q3} = {q0,q3} = D                           with 1 

 

Final states in the equivalent DFA are those containing state q3 of the NFA (i.e., D and 

E). The equivalent DFA is as follows: 

  

 


