

Duration: 45 minutes

1. (3.5 points) Given the following Finite Automaton

a. Is this a DFA or a NFA? Explain in detail.

It is a DFA given that:

- For every pair (state, input symbol) there is only one possible transition.
- There are not λ-transitions.
b. Construct the minimal equivalent DFA. Explain in detail.

We have to apply the algorithm related to equivalence classes. Q / EO is calculated by creating a class with final states and a second class with non-final states:
$C 0=\{q 4\}$
$C 1=\{q 0, q 1, q 2, q 3\}$

Q/E1

We take the class C 1 , given that the class CO just contains one state.
$f(q 0, a)=q 1 \quad f(q 1, a)=q 1 \quad f(q 2, a)=q 1 \quad f(q 3, a)=q 1$
$f(q 0, b)=q 2 \quad f(q 1, b)=q 3 \quad f(q 2, b)=q 2 \quad f(q 3, b)=q 4$

Then, we can conclude that $\{q 0, q 1, q 2\}$ are equivalent states and a new class has to be created for q4:
$C 0=\{q 4\}$
$C 1=\{q 0, q 1, q 2\}$
$C 2=\{q 3\}$
Q/E2
We take again the class C1, given that the classes C0 and C2 just contain one state.
$f(q 0, a)=q 1 \quad f(q 1, a)=q 1 \quad f(q 2, a)=q 1$
$f(q 0, b)=q 2 \quad f(q 1, b)=q 3 \quad f(q 2, b)=q 2$
Then, we can conclude that $\{q 0, q 2\}$ are equivalent states and a new class has to be created for q1:
$C O=\{q 4\}$
$C 1=\{q 0, q 2\}$
$C 2=\{q 3\}$
$C 3=\{q 1\}$

Q/E3

We take again the class C1, given that the classes C0, C2 and C3 just contain one state.
$f(q 0, a)=q 1 \quad f(q 2, a)=q 1$
$f(q 0, b)=q 2 \quad f(q 2, b)=q 2$

Then, we can conclude that $\{q 0, q 2\}$ are equivalent states and:
$Q / E 3=Q / E 2=Q / E$

The minimal DFA is as follows:

c. Which is the language that is recognized? Explain in detail.

The words that are accepted by this FA can be expressed by means of the following mathematical expression:

$$
\left(b^{n} a a^{n} b\left(a a^{n} b\right)^{n} b\left(a a^{n} b\left(a a^{n} b\right)^{n} b\right)^{n} b\right)^{n} b^{n} a a^{n} b\left(a a^{n} b\right)^{n} b\left(a a^{n} b\left(a a^{n} b\right)^{n} b\right)^{n} n \geq 0
$$

2. (3.5 points) Given the input alphabet $\{0,1\}$:
a. Construct a NFA to recognize words having the form XOZY where:

- X and Y are every possible combination of 0 's and/or 1's ($\boldsymbol{\lambda}$ included).
- $\quad Z$ is a word which consists of one or more '01’ subwords (at least one).

A valid NFA to recognize the words described by the restrictions of the problem is as follows:

b. Construct an equivalent DFA. Explain in detail.

We apply the algorithm based on λ-closure to calculate an equivalent DFA. The initial state of the equivalent DFA can be calculated as follows:
$A=\lambda$-closure $\{q 0\}=\{q 0\}$
We have the following transitions from q0 in the NFA:

$$
\begin{array}{ll}
\mathrm{q} 0 \rightarrow\{\mathrm{q} 0, \mathrm{q} 1\} & \text { with } 0 \\
\mathrm{q} 0 \rightarrow \mathrm{q} 0 & \text { with } 1
\end{array}
$$

This implies the following transitions from the state A of the equivalent DFA:
$\begin{array}{ll}A \rightarrow \lambda \text {-closure }\{q 0, q 1\}=\{q 0, q 1\}=B & \text { with } 0 \\ A \rightarrow \lambda \text {-closure }\{q 0\}=\{q 0\}=A & \text { with } 1\end{array}$
$A \rightarrow \lambda$-closure $\{q 0\}=\{q 0\}=A \quad$ with 1
Now we have to calculate transitions from the new state B in the DFA. In the initial NFA we have the following transitions from the states $\{q 0, q 1\}$:

```
q0 }->{q0,q1}\quadq1 -> {q2} with 
q0}->\textrm{q}0\quad\mathrm{ with }
```

This implies the following transitions from the state B of the equivalent DFA:
$B \rightarrow \lambda$-closure $\{q 0, q 1\}=\{q 0, q 1, q 2\}=C$ with 0
$B \rightarrow \lambda$-closure $\{q 0\}=\{q 0\}=A \quad$ with 1
We have to repeat to calculate now transitions from the new state C in the DFA. In the initial NFA we have the following transitions from the states $\{q 0, q 1, q 2\}$:
$\begin{array}{lll}\mathrm{q} 0 \rightarrow\{\mathrm{q} 0, \mathrm{q} 1\} & \mathrm{q} 1 \rightarrow\{\mathrm{q} 2\} & \text { with } 0 \\ \mathrm{q} 0 \rightarrow \mathrm{q} 0 & \mathrm{q} 2 \rightarrow \mathrm{q} 3 & \text { with } 1\end{array}$
This implies the following transitions from the state C of the equivalent DFA:
$\mathrm{C} \rightarrow \lambda$-closure $\{\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 2\}=\{\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 2\}=\mathrm{C}$ with 0
$\mathrm{C} \rightarrow \lambda$-closure $\{\mathrm{q} 0, \mathrm{q} 3\}=\{\mathrm{q} 0, \mathrm{q} 3\}=\mathrm{D} \quad$ with 1
We repeat the process with the new state D :
$\mathrm{D} \rightarrow \lambda$-closure $\{\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3\}=\{\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3\}=\mathrm{E}$ with 0
$D \rightarrow \lambda$-closure $\{q 0, q 3\}=\{q 0, q 3\}=D$
with 1
Finally, we calculate the transitions for the state E :
$E \rightarrow \lambda$-closure $\{q 0, q 1, q 2, q 3\}=\{q 0, q 1, q 2, q 3\}=E$ with 0
$\mathrm{E} \rightarrow \lambda$-closure $\{\mathrm{q} 0, \mathrm{q} 3\}=\{\mathrm{q} 0, \mathrm{q} 3\}=\mathrm{D} \quad$ with 1
Final states in the equivalent DFA are those containing state $q 3$ of the NFA (i.e., D and E). The equivalent DFA is as follows:

