

Duration: 45 minutes

1. Indicate whether the following statements are true or false.

Correct Answer:+0.3 Wrong Answer:-0.3 No answer =0
Minimum Mark: $0 \quad$ Maximum Mark: 3 points

	True	False
In a grammar, the word λ can be included in the set of terminal symbols.		\mathbf{X}
A sentential form can include nonterminal symbols.	\mathbf{X}	\mathbf{X}
There is an algorithm to determine whether a grammar is ambiguous or not.	\mathbf{X}	
A::=aB is a rule in CNF.	\mathbf{X}	
For every Type-1 grammar it is possible to find an equivalent Push-Down Automaton.	\mathbf{X}	
Type-2 languages are also called context-free languages.	\mathbf{X}	
Every type-2 grammar is also a type-3 grammar.	\mathbf{X}	
If the number of sentences of a Language is infinite, then the grammar is recursive.		
Every grammar is GNF is a Type-3 grammar.		
S \rightarrow AbbB \rightarrow BaA is a derivation of order 3.		\mathbf{X}

2. Indicate whether the following statements are true or false.

| Correct Answer:+0.3 | Wrong Answer:-0.3 \quad No answer $=0$ |
| :---: | :---: | :---: |
| Minimum Mark: $0 \quad$ Maximum Mark: 3 points | |

	True	False
Given a grammar $(\Sigma=\{0,1\})$ with the following production rules $\{\mathrm{S}::=\mathrm{A} 1\|0 \mathrm{~B}\| 0, \mathrm{~A}::=\mathrm{A} 1\|1, \mathrm{~B}::=\lambda\| 0 \mathrm{~S}\}$, it is a Type-3 grammar.		X
The grammar with axiom S and production rules $\mathrm{P}=\{\mathrm{S}::=\mathrm{B} 0$; $B::=1 \mid C 1 ; C::=B 2 ; D::=S 1\}$ is a recursive grammar.	X	
Given a grammar $(G=\{\{0,1\},\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}, \mathrm{S}, \mathrm{P}\})$ with the following production rules $\mathrm{P}=\{\mathrm{S}::=1 \mathrm{~S}\|1 \mathrm{~A}\| 0 \mathrm{~B}\|0\| \lambda$, $\mathrm{A}::=1 \mathrm{~A} \mid 1$, B $::=\lambda \mid 0 \mathrm{~B}\}$, it can be transformed into a Type-3 left-linear grammar.	X	
$\mathrm{A}::=\mathrm{A}$ is a unit production or redenomination rule		X
The production rule $\mathrm{AaC}::=\mathrm{AbabC}$, does not retain the context.	X	
Given the grammar, $\mathrm{G}=(\{\mathrm{a}, \mathrm{b}\},\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{S}\}, \mathrm{S}, \mathrm{P}=\{\mathrm{S}::=\mathrm{aA}$; $A::=a A\|b B ; B::=b B\| b ;\},), a a b b$ is a sentence of the language.	X	
CcdEA: $=$ CCEb is a valid rule for a Type-1 grammar.		X
Every Type-3 grammar has an equivalent NON-Deterministic FA.	X	
Every Type-3 grammar has an equivalent Deterministic FA.	X	
Given a grammar $(G=\{\{0,1\},\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}, \mathrm{S}, \mathrm{P}\})$ with the following production rules $\mathrm{P}=\{\mathrm{S}::=1 \mathrm{~S}\|1 \mathrm{~A}\| 0 \mathrm{~B}\|0\| \lambda$, $\mathrm{A}::=1 \mathrm{~A} \mid 1$, B $::=\lambda \mid 0 \mathrm{~B}\}$, if the grammar is cleaned and becomes well-formed, then it would be a type- 3 right-linear grammar.	X	

3. (4 points) Given the grammar $G=(\{0,1,2\},\{S, A, B, C, D, E\}, S, P)$
$P=\{(S::=A A B C),(A::=\lambda \mid 1 A 0),(B::=1 B \mid 1),(C::=1 C 1|0 C 0| \lambda),(D::=0)\}$
a) Which is the type of grammar in the Chomsky Hierarchy?

It is a Type-2 Grammar given that there is a single nonterminal symbol on the left side of every production rule and the structure of the productions rules does not fulfill the requirements to have a type-3 right-linear grammar or a left-linear grammar.
b) Obtain an equivalent grammar in GNF. Explain in detail the process that you have followed.

There is not left-recursion.
The first problem that is detected is related to useless/unreachable nonterminal and terminal symbols. This way, nonterminals D and E and the terminal 2 can be removed. The useless rule $\mathrm{D}::=0$ can then also be removed.

There are two not-generating rules:
$\mathrm{A}::=\lambda$ can be removed by adding:

$$
\begin{aligned}
& \mathrm{S}::=\mathrm{ABC} \mid \mathrm{BC} \\
& \mathrm{~A}::=10
\end{aligned}
$$

$C::=\lambda$ can be removed by adding:

$$
\begin{aligned}
& \mathrm{S}::=\mathrm{AAB}|\mathrm{AB}| \mathrm{B} \\
& \mathrm{C}::=11 \mid 00
\end{aligned}
$$

Now we have introduced the unit production $S::=B$. This production rule can be removed by adding the following production rules:

$$
S::=1 B \mid 1
$$

The equivalent well formed grammar includes the following production rules:

$$
\begin{aligned}
& \mathrm{S}::=\underline{\mathrm{AABC}}|\underline{\mathrm{ABC}}| \underline{\mathrm{BC}}|\underline{\mathrm{AAB}}| \underline{\mathrm{AB}}|1 \mathrm{~B}| 1 \\
& \mathrm{~A}::=\underline{1 \mathrm{~A} 0} \mid \underline{10} \\
& \mathrm{~B}::=1 \mathrm{~B} \mid 1 \\
& \mathrm{C}::=\underline{1 \mathrm{C} 1}|\underline{0 \mathrm{C}}| \underline{11} \mid \underline{00}
\end{aligned}
$$

The productions not in GNF are:

$\mathbf{S}::=\underline{\mathbf{A A B C}}$	$\mathbf{S}::=\underline{\mathbf{A B C}}$	$\mathbf{S}::=\underline{\mathbf{B C}}$
$\mathrm{S}::=\underline{\underline{1 \mathrm{~A} 0 \mathrm{ABC}} \mid \underline{10 \mathrm{ABC}}}$	$\mathrm{S}::=\underline{\underline{1 \mathrm{~A} 0 \mathrm{BC}} \mid \underline{10 \mathrm{BC}}}$	$\mathrm{S}::=1 \mathrm{BC} \mid 1 \mathrm{C}$
We add:	Then:	
$\mathrm{Z}::=0$	$\mathrm{~S}::=1 \mathrm{AZBC} \mid 1 \mathrm{ZBC}$	
Then: $\mathrm{S}::=1 \mathrm{AZABC} \mid 1 \mathrm{ZABC}$		
$\mathbf{S}::=\underline{\mathbf{A A B}}$	$\mathbf{S}::=\underline{\mathbf{A B}}$	
$\mathrm{S}::=\underline{1 \mathrm{~A} 0 \mathrm{AB}} \mid 10 \mathrm{AB}$	$\mathrm{S}::=\underline{1 \mathrm{~A} 0 \mathrm{~B}} \mid 10 \mathrm{~B}$	
$\mathrm{Then:}$	Then:	
$\mathrm{S}::=1 \mathrm{AZAB} \mid 1 \mathrm{ZAB}$	$\mathrm{S}::=1 \mathrm{AZB} \mid 1 \mathrm{ZB}$	

