CARLOS III

UNIVERSIDAD CARLOS III DE MADRID FORMAL LANGUAGES AND AUTOMATA THEORY **COMPUTER SCIENCE DEGREE. CONTINUOUS ASSESSMENT - PARTIAL 2** Date: 2011 November 11th Last name(s): ______ First name: _____ NIA: _____

Duration: 45 minutes

1. Indicate whether the following statements are true or false.

Correct Answer:+0.3 Wrong Answer:-0.3 No answer =0 Minimum Mark: 0 Maximum Mark: 3 points

	True	False
In a grammar, the word $\boldsymbol{\lambda}$ can be included in the set of terminal symbols.		X
A sentential form can include nonterminal symbols.	X	
There is an algorithm to determine whether a grammar is ambiguous or not.		Х
A::=aB is a rule in CNF.		X
For every Type-1 grammar it is possible to find an equivalent Push-Down Automaton.		X
Type-2 languages are also called context-free languages.	X	
Every type-2 grammar is also a type-3 grammar.		X
If the number of sentences of a Language is infinite, then the grammar is recursive.	X	
Every grammar is GNF is a Type-3 grammar.		X
S→AbbB→BaA is a derivation of order 3.		X

2. Indicate whether the following statements are true or false.

Correct Answer:+0.3 Wrong Answer:-0.3 No answer =0
Minimum Mark: 0 Maximum Mark: 3 points

	True	False
Given a grammar (Σ ={0,1}) with the following production rules { $S ::= A \ 1 \ 0 \ B \ 0$, $A ::= A \ 1 \ 1$, $B ::= \lambda \ 0 \ S$ }, it is a Type-3 grammar.		X
The grammar with axiom S and production rules P={S::=B0; B::=1 C1; C::=B2; D::=S1} is a recursive grammar.	X	
Given a grammar (G = {{0,1},{S,A,B},S,P}) with the following production rules P = { S ::= 1 S 1 A 0 B 0 λ , A ::= 1 A 1, B ::= λ 0 B}, it can be transformed into a Type-3 left-linear grammar.	X	
A::=A is a unit production or redenomination rule		Х
The production rule AaC ::= AbabC, does not retain the context.	X	
Given the grammar, $G=(\{a,b\},\{A,B,C,S\},S,P=\{S::=aA;A::=aA\mid bB;B::=bB\mid b;\},$), aabb is a sentence of the language.	Х	
CcdEA::=CCEb is a valid rule for a Type-1 grammar.		X
Every Type-3 grammar has an equivalent NON-Deterministic FA.	X	
Every Type-3 grammar has an equivalent Deterministic FA.	X	
Given a grammar (G = {{0,1},{S,A,B},S,P}) with the following production rules P = { S ::= 1 S 1 A 0 B 0 λ , A ::= 1 A 1, B ::= λ 0 B}, if the grammar is cleaned and becomes well-formed, then it would be a type-3 right-linear grammar.	X	

3. (4 points) Given the grammar $G = (\{0, 1, 2\}, \{S, A, B, C, D, E\}, S, P)$ $P = \{(S ::= AABC), (A ::= \lambda \mid 1A0), (B ::= 1B \mid 1), (C ::= 1C1 \mid 0C0 \mid \lambda), (D ::= 0)\}$

a) Which is the type of grammar in the Chomsky Hierarchy?

It is a Type-2 Grammar given that there is a single nonterminal symbol on the left side of every production rule and the structure of the productions rules does not fulfill the requirements to have a type-3 right-linear grammar or a left-linear grammar.

b) Obtain an equivalent grammar in GNF. Explain in detail the process that you have followed.

There is not left-recursion.

The first problem that is detected is related to useless/unreachable nonterminal and terminal symbols. This way, nonterminals D and E and the terminal 2 can be removed. The useless rule D := 0 can then also be removed.

There are two not-generating rules:

A::= λ can be removed by adding:

$$S ::= ABC \mid BC$$

$$A ::= 10$$

 $C:=\lambda$ can be removed by adding:

Now we have introduced the unit production S := B. This production rule can be removed by adding the following production rules:

$$S ::= 1B | 1$$

The equivalent well formed grammar includes the following production rules:

$$\begin{split} S ::= & \underbrace{AABC \mid \underline{ABC} \mid \underline{BC} \mid \underline{AAB} \mid \underline{AB} \mid 1B \mid 1}_{A::= \underbrace{1A0} \mid 10} \\ B ::= & 1B \mid 1 \\ C ::= & \underbrace{1C1 \mid \underline{0C0} \mid \underline{11} \mid \underline{00}}_{} \end{split}$$

The productions not in GNF are:

$S := \underline{AABC}$	$S := \underline{ABC}$	$S := \underline{BC}$
S ::= <u>1A0ABC</u> <u>10ABC</u>	S ::= <u>1A0BC</u> <u>10BC</u>	S ::= 1BC 1C
We add:	Then:	
Z ::= 0	S ::= 1AZBC 1ZBC	
Then: S ::= 1AZABC 1ZABC		
$S := \underline{AAB}$	S ::= <u>AB</u>	
S ::= <u>1A0AB 10AB</u>	S ::= <u>1A0B 10B</u>	
Then:	Then:	
S ::= 1AZAB 1ZAB	S ::= 1AZB 1ZB	

B::=1B | 1

Z ::= 0 U ::= 1

C::= 1CU | 0CZ | 1U | 0Z

$A := \underline{1A0}$	A::= <u>10</u>			
A::= 1AZ	A::= 1Z			
C::= <u>1C1</u>	C::= <u>0C0</u>			
We add:	C::= 0CZ			
U ::= 1				
Then:				
C::= 1CU				
C::= <u>11</u>	C::= <u>00</u>			
C::= 1U	C::= 0Z			
The equivalent grammar in GNF is;				
$G = (\{0, 1\}, \{S, A, B, C, Z, U\}, S, P)$ $P = \{$				
S ::= 1AZABC 1ZABC 1AZBC 1ZBC 1BC 1C 1AZAB 1ZAB 1AZB 1ZB 1B 1				