
Motores de Combustión Interna

Universidad Carlos III de Madrid Capítulo 7: Combustión en MEP- MIF

Profs.
Antonio Lecuona
Pedro Rodríguez
Mathieu Legrand
Rubén Ventas

Gentileza de General Motors-Opel (El color de la llama no es real)

Cuestiones de autoevaluación

La información contenida en este trabajo sirve de propósito exclusivo para la enseñanza y la de procedencia externa ha sido obtenida de las mejores fuentes que se han podido encontrar, generalmente de reconocido prestigio. No obstante los autores no garantizan la exactitud o perfección de su contenido. Por ello, no será/n responsable/s de cualquier error, omisión o daño causado por el uso de la información contenida, no tratando con este documento prestar ninguna clase de servicio profesional o técnico; antes bien, se ofrece como simple guía general de apoyo a la docencia. Cualquier indicación de error u omisión será bienvenida. El contenido del documento pudiera estar sujeto a derechos de autor o de propiedad industrial o intelectual.

1

COMBUSTIÓN EN MIF

Introducción – Fenomenología de la combustión

Velocidad de propagación y estructura de la llama

Etapas de la combustión.

Modelado de la
combustión –
Influencia de las
variables de
diseño y
operación.

Contaminación y mitigación de la contaminación

Combustión anormal: detonación y encendido superficial.

> Máquinas y Motores Térmicos

9.- Cuestiones de autoevaluación volver

#	Cuestión	V/F
1	La combustión en MEPs trata de evitar la autoignición	V
2	La autoignición tiene un tiempo de retardo, una vez alcanzadas las condiciones para que se dé.	V
3	El tiempo de retardo ha de ser < que el de residencia en las condiciones de autoignición, para que la detonación no se produzca	F
4	La premezcla permite que nos e formen llamas amarillas	V
5	La presión en la cámara de combustión de un MEP es espacialmente homogénea, salvo que aparezca detonación	V
6	La temperatura en la combustión real de un MEP es espacialmente homogénea en la cámara	F
7	En los MEP conviene empobrecer la mezcla al efecto de lograr buen rendimiento del ciclo	V
8	La mezcla en los MEP se puede empobrecer fin límite	F
9	En los MEP de mezcla estratificada, la combustión pasa de ser rica a ser pobre en un mismo ciclo	V
10	Los MEP de mezcla estratificada permiten mezclas globalmente más pobres que los de mezcla homogénea.	V
11	Al sobrealimentar un motor, aumenta su tendencia a detonar, ceteris paribus.	V
12	La aparición de gases contaminantes en el escape de los MEP se debe no solo a cuestiones explicadas por la termoquímica, sino además a aspectos de cinética química.	V

COMBUSTIÓN EN MIF

Introducción – Fenomenología de la combustión

Velocidad de propagación y estructura de la llama

Etapas de la combustión.

Modelado de la
combustión –
Influencia de las
variables de
diseño y
operación.

Contaminación y mitigación de la contaminación

Combustión anormal: detonación y encendido superficial.

> Máquinas y Motores Térmicos

9.- Cuestiones de autoevaluación volver

#	Cuestión	V/F
13	El catalizador de tres vías es válido para motores de mezcla pobre	F
14	El EGR permite bajar los NOx, pero aumentan los HC por reducirse la temperatura de la llama	V
15	En un motor convencional de mezcla homogénea, la producción de NOx es máxima con mezcla ligeramente pobre	V
16	Según va progresando la combustión en la fase rápida, la velocidad de propagación se va enlenteciendo.	F
17	El uso de gasolina de mayor N. O. permite mayor potencia, por aumentar su poder calorífico	F
18	Un MEP con hidrógeno como combustible no emitiría NOx.	F
19	La relación de compresión en los MEP está limitada por la aparición de la detonación	V
20	Agregar swirl o tumble al diseño de un motor beneficia la combustión, pero aumenta las pérdidas de calor a las paredes, ceteris paribus	V
21	Agregar swirl o tumble al diseño de un motor reduce su rendimiento volumétrico	V
22	El avance al encendido óptimo suele ser mayor que el MBT	F
23	En un MEP, al producirse la autoignición espontánea de los reactantes, aparecen dos presiones distintas en la cámara de combustión	V
24	Las llamas laminares de premezcla son más rápidas que las turbulentas	F
25	En un MEP lento, el tiempo de residencia en condiciones de autoignición es mayor que en uno rápido	V

COMBUSTIÓN EN MIF

Introducción – Fenomenología de la combustión

Velocidad de propagación y estructura de la llama

Etapas de la combustión.

Modelado de la combustión –
Influencia de las variables de diseño y operación.

Contaminación y mitigación de la contaminación

Combustión anormal: detonación y encendido superficial.

> Máquinas y Motores Térmicos

9.- Cuestiones de autoevaluación volver

#	Cuestión	V/F
26	Un motor está diseñado para usar gasolina con N. O. 95. Si se le alimenta con N. O. 98 sufrirá daños	F
27	Un motor está diseñado para usar gasolina con N. O. 95. Si se le alimenta con N. O. 98 funcionará mejor	F
28	Un motor está diseñado para usar gasolina con N. O. 98. Si se le alimenta con N. O. 95 puede sufrir daños	V
29	Una pequeña cantidad de combustible Diésel a gasolina de N. O. 95, la mejora en su capacidad anti-detonación	F
30	La presencia de oxígeno en los gases de escape, cuando se actúa con mezcla globalmente pobre, dificulta su reducción catalítica sin aditivos	V
31	Como el gas natural y el propano disfrutan de un N. O superior a las gasolinas, la conversión de motores de gasolina a operar con estos combustible no necesita rebajar la relación de compresión	V
32	Un MEP $\operatorname{con} D$ mayor que otro y $\operatorname{con} \operatorname{la}$ misma n tiene más riesgo de detonación, ceteris paribus	V
33	Los MEP de gran tamaño tienen D mayor, salvo que tuvieran muchos cilindros y suelen tener igual velocidad media del ámbolo u . Ambos efectos aumentan el tiempo de residencia en condiciones de autoignición, ceteris paribus.	V
34	Se desea modificar un MEP, añadiéndole EGR. Su encendido deberá producirse más cerca del PMS	F
35	Se desea turboalimentar un MEP de aspiración normal. Es razonable que se tenga que bajar su r_c salvo que a plena carga se tomen medidas anti-detonación, como reducir el AE .	V