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• First it is explained what is meant by large scale machine learning, and 

shown that there are several ways in which machine learning 

algorithms can be parallelized: task, data, and pipeline parallelism 

 

• Some examples of task parallelism are commented (mainly, 

embarrasing parallelism or obvious parallelism). 

 

• But the main kind of parallelism that is used nowadays is data 

parallelism 

 



• One of the main paradigms for data parallelism is MapReduce 

 

• MapReduce is particularly useful when hundreds or thousands of 

computers connected via a network are available, and data can be 

partitioned into the different computers. The main idea of MapReduce 

is not to move the data, but to move the processes to where data is 

located. 

 

• The MapReduce model is explained by explaining its main processes: 

map, sort and shuffle, and reduce. An example for counting words is 

explained. The combiner functions are explained to increase 

efficiency. 

 

• Three algorithms are programmed in the MapReduce model: 

• KNN 

• Decision trees (by distributing the computation of the entropy 

function) 

• The clustering algorithm k-means 

 

• Finally, it is explained that nowadays data parallelism is moving 

towards a new programming model called Spark, although many of 

the MapReduce ideas are valid for Spark. 

 



LARGE SCALE MACHINE LEARNING  
- MAPREDUCE - 



LARGE SCALE MACHINE LEARNING 

• Increasing computational needs: 

• Very large datasets (instances, attributes) 

• Complex algorithms / large models: large ensembles, 

computationally intensive optimization processes (deep learning, 
…)  

• Computationally intensive tasks: Crossvalidation, Hyper-parameter 

tuning, algorithm selection (try knn, decision trees, …) 

• Increasing computational power: 

• Multicore (for example: i7 Intel computers have 4 real cores) 

• Large computer networked clusters 

• Alternative hardware: FPGAs (Field Programmable Gate Array), 
GPUs (Graphics processing unit ) 

 



PARALELLISM 

• Every year we have faster and faster computers, 

but speed is becoming increasingly difficult. The 

alternative is doing many things in parallel: 

 

• Task parallelism: Different tasks running on the same data 

• Data parallelism: The same task run on different data in 

parallel. 

• Pipeline parallelism: Output of one task is input for another 

task 

 



TASK PARALELLISM 

• Different processes run on the same data 

• Embarrassing paralallelism: 

• Crossvalidation: 

• cross_val(model, X, y, n_jobs=4, cv=3) 

• Hyper-parameter tuning (grid search) 

• GridSearchCV(model, n_jobs=4, cv=3).fit(X, y) 

• Ensembles: 

• RandomForestClassifier(n_jobs=4).fit(X, y) 

• Check Olivier Grisel’s tutorial (“Strategies & Tools for 

Parallel Machine Learning in Python) 

• http://es.slideshare.net/ogrisel/strategies-and-tools-for-

parallel-machine-learning-in-python 



PARALLELIZATION OF GRID SEARCH 

MAX_DEPTH 2 4 6 8 

MIN_SAMPLES 

2 (2,2) (2,4) (2,6) (2,8) 

4 (4,2) (4,4) (4,6) (4,8) 

6 (6,2) (6,4) (6,6) (6,8) 

Grid search means: try all possible combinations of values for the hyper-

parameters. Given that each combination is independent of the 

others, they can be carried out in parallel. 



PARALLELIZATION OF 
CROSSVALIDATION 

• For i in [1, 2, …, k] 
• Learn model with all partitions but i 

• Test model with partition i 

• k independent iterations => they can be carried out 

in parallel 

 



PARALLELIZATION OF ENSEMBLES 

• We will talk about ensembles in future lectures 

• It involves building not one, but hundreds or 

thousands of classifiers 

• In one of the cases (Bagging and Random Forests), 

the models are independent of each other, and 

can be built in parallel. 



“NON EMBARRASINGLY” PARALLELISM 

• Not all algorithms are embarrasingly parallel 

• For instance, it is not so easy to task-parallelize the 

decision tree learning algorithm (i.e. it is not so easy 

to decompose DT learning into subprocesses that 

can be run in parallel) 

• But, crossvalidation, grid-search, and ensembles are 

processes that you are going to run, and probably 

that’s all the task-parallelism (embarrasingly so) that 

you will ever need 

 



DATA PARALLELISM 

• The same task running on different data, in parallel 

… 

LOCAL AREA NETWORK 



BIG DATA 

• Currently, Big Data means data parallelism 

• Either: 

• Data does not fit on a single computer  

• or it takes too long to process on a single computer 

• Three V’s: 

• Volume: up to petabytes 

• Velocity:  streaming 

• Variety: structured / unstructured (text, sensor data, audio, video, 
click streams, log files, …) 

• It takes advantage of commodity hardware farms 

• Current programming models: Mapreduce (Yahoo), 

Apache Spark, Dryad (Microsoft), Vowpal Wabbit 

(Microsoft) 

 

 



MOTIVATION 

• Using available comodity hardware: basically, 

thousands of standard PCs organized in racks and with 

local hard disks 

 

 



MAP REDUCE 

• Programming model for data parallelism / distributed 
computation 

• Based on two operations: 
• Map: executed in parallel in different computers 

• Reduce: combines results produced by the maps 

• The aim of the model is that heavy processing happens 
locally (map processes), where the data is stored.  
• Do not use the network, or use it as little as possible.  

• Results produced by Map are much smaller in size, and can be 
combined (reduced) in other computers. 

• Origins: Google 2004 (page indices, etc. Several 
petabytes daily) 

• Used in Facebook, Linkedln, Tuenti, ebay, Yahoo, … 

• Amazon AWS, Microsoft Azure, Google, … provide Map-
Reduce platforms (not for free) 

 

 



MAP REDUCE DATA PARALLELISM 

• Map processes do the heavy processing locally, where data resides 

• Map results (very small in size), are partial results, that  travel across 

the network and are combined by the reducer into a final result. 

… 

LOCAL AREA NETWORK 

MAP F MAP F MAP F REDUCE G 

Partial 
result 

Partial 
result 

Partial 
result 

Final 
result 
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partition 

Third 

data 

partition 



MAPREDUCE PROGRAMMING MODEL 

• Inspired in functional programming: map and 

reduce 

• For instance, In Python: 

 



COUNTING WORDS IN MAPREDUCE 

• Let’s suppose we have a huge dataset with text (like the news datasets we 

have already seen) 

• Our aim is to count how many times each word appears in the dataset: 

1. The huge dataset is split into different partitions (as many partitions as 

hard disks) 

2. Function map counts words in a text 
• Note: each CPU / computer may be able to run several map functions in parallel (multicore) 

3. Sort & shuffle: partial results from maps are grouped by key and delivered 

to reduce functions in other computers via the network, depending on 

keys. This is done automatically by the mapreduce system 
• Note:  output of map can be grouped by hashfunction(key) rather than key. The user is 

responsible for defining the hashfunction 

4. Function reduce adds occurrences of the same word 
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MAP AND REDUCE FUNCTIONS 

• The programmer has to program two functions: map and reduce. “Sort & 

Shuffle” is carried out automatically 

• map(key, value)  

=> [(key1, value1), (key2, value2), …, (keyn, valuen)] 

• Sort and shuffle: (k1, v1), (k1, v2), …, (k1, vn), (k2, w1), …, (k2, wm), …  

=> (k1, [v1, v2, …, vn]), (k2, [w1, w2, …, wm]), … 

• reduce(k, [v1, v2, …, vn]) 

=> result 



COUNTING WORDS IN MAPREDUCE. 
EXAMPLE IN PYTHON 

 



COMBINER FUNCTIONS 

• There are additional operations that could be reduced in the local 

computer, instead of being sent to a remote reducer. 

• Example: (apple, 1), (apple, 1) and (apple, 1) can be added locally, 

instead of being sent to the reducer via the network 

• A combiner function is like a reducer, but it is executed in the same 

computer as the map function 

• combiner(k, [v1, v2, …, vn]) 
=> (k, result) 

 

COMBINER 

Apple, 3 
Plum, 2 
Mango, 1 

Send to sort 

& shuffle 

and 

reducer via 

network 

Notice that fewer 

bytes are sent via 
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COUNTING WORDS IN MAPREDUCE. 
EXAMPLE IN PYTHON 

• In the counting words 

problem, the 

combiner is just like 

the reducer 



FAILURE RECOVERY 

• The output of maps is written to the 

local hard disk, in addition to being 

sent via the network 

• If something fails, results can be 

recovered from the local hard disk 

Local computer 
Send to sort 

& shuffle 

and 

reducer via 

network 

Send to sort 

& shuffle 

and 

reducer via 

network 

Local disk 
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FAILURE RECOVERY 

• The output of reducers (i.e. the final 

results) is written to the distributed 

Hadoop File System (HDFS) and made 

available to the user 

• This is different than writing to local disks 

because it involves sending info via the 

network 

• HDFS is a distributed file system: a 

unique file containing the results can be 

distributed across different hard disks in 

different computers in the network 

• Additionally, the same file is replicated 
several times (usually three) for 

redundancy and recovery reasons 

• If a single computer can fail once 

every three years then, if the farm 

contains 1000 computers, 2.7 of 

them will fail every day!! 

To: HDFS 

(distributed 

via network 

with 

replication) 



HADOOP ECOSYSTEM 

 

Pig 



HADOOP ECOSYSTEM 

• Preferred programming language is Java (but it can be done 

with Python and R) 

• Pig: data base platform. High level queries are translated to 

Mapreduce. Language: Pig-latin 

• Hive: similar to Pig, but closer to SQL. Language: HiveQL 

• Mahout: Mapreduce-based Machine Learning library 

• Mapreduce is quickly being superceded by Apache Spark: 
“Apache Mahout, a machine learning library for Hadoop since 2009, is joining the exodus away 
from MapReduce. The project’s community has decided to rework Mahout to support the 
increasingly popular Apache Spark in-memory data-processing framework, as well as the H2O 
engine for running machine learning and mathematical workloads at scale.” 

• But most ideas of Mapreduce are similar in Spark 

 

http://spark.apache.org/
http://0xdata.com/h2o-2/
http://0xdata.com/h2o-2/


KNN IN MAPREDUCE? 

Anchalia, P. P., & Roy, K. The k-Nearest Neighbor Algorithm Using 

MapReduce Paradigm. 



PLANET: MASSIVELY PARALLEL 
LEARNING OF TREE ENSEMBLES WITH 

MAPREDUCE 



DECISION TREES WITH MAP REDUCE 

• PLANET: Massively Parallel Learning of Tree 

Ensembles with MapReduce 

• Biswanath Panda, Joshua S. Herbach, Sugato Basu, 

Roberto J. Bayardo 

• 2009 

• Google, Inc. 

 



PARALLEL LEARNING OF A DECISION 
TREE 

1. Learn different subtrees in different 
computers 

• Problem:  

• either the entire dataset is available to all 

computers (shared memory, or disk) 

• or the entire dataset is replicated in all 

computers (local disks or memory) 

• or the appropriate subsets of data are sent 

accross the network 

2. Attribute selection: evaluate each 

attribute in a different computer: 
• Problem: similar to 1) 

3. Evaluate different values of an 

attribute in different computers 
• Problem: similar to 1) 

 



PARALLEL LEARNING OF A DECISION 
TREE 

• Can we partition the dataset from the beginning into 

different computers and not move it around the 

network? 

• Can we formulate the problem in Mapreduce terms? 

• The computation of the impurity measure (e.g. 

entropy) can be distributed among processors 
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Average entropy (H) computation for Sky 

S T H W Ten 

Sun

ny 

85 85 No No 

Sun

ny 

80 90 Yes No 

Sun

ny 

72 95 No No 

Sun

ny 

69 70 No Yes 

Sun

ny 

75 70 Yes Yes 

S T H W Ten 

Outcast 83 86 No Yes 

Outcast 64 65 Yes Yes 

Outcast 72 90 Yes Yes 

Outcast 81 75 No Yes 

Sky 
Sunny 

Outcast 
Rainy 

S T H W Ten 

Rainy 70 96 No No 

Rainy 68 80 No Yes 

Rainy 75 80 No Yes 

Rainy 65 70 Yes No 

Rainy 71 91 Yes No 

“3 No, 2 Yes” 

“0 No, 4 Yes” 
“3 No, 2 Yes” 

H = -( 

(3/5)*log2(3/5) + 

(2/5)*log2 (2/5)  

)= 0.97 

H = -( 

(0/4)*log2 (0/4) +  

(4/4)*log2 (4/4) 

)=0 

H = -( 

(3/5)*log2 (3/5) +  

(2/5)*log2 (2/5) 

) = 0.97 



Weighted average entropy for Sky 

 

• Weighted average entropy for Sky: 

• HP=(5/14)*0.97+(4/14)*0+(5/14)*0.97 = 0.69 

• Note: there are14 instances in the data set 

 

 



Discrete Tennis dataset 

Sky   Temperature Humidity Wind Tennis 

Sunny  Cold  Normal No Yes 

Sunny  Moderate  Normal Yes Yes 

Sunny  Hot  High No No 

Overcast Cold  Normal Yes Yes 

Sunny  Moderate  High No No 

Sunny  Hot  High Yes No 

Overcast Hot  High No Yes  

Overcast Moderate High Yes Yes 

Overcast Hot  Normal No Yes 

Rainy  Moderate High No Yes 

Rainy  Cold  Normal Yes No 

Rainy  Cold  Normal No Yes 

Rainy  Moderate  High Yes No 

Rainy  Moderate Normal No Yes 

Let’s see an example for selecting the best attribute for the root node 



• In order to compute entropy for each attribute and 

attribute value, it is necessary to compute the 

following tables 

2 3 Rainy 

0 4 Overcast 

3 2 Sunny 

No Yes Sky 

1 3 Cold 

2 4 Moderate 

2 2 Hot 

No Yes Temperat

ure 

1 6 Normal 

4 3 High 

No Yes Humidity 

2 6 No 

3 3 Yes 

No Yes Wind 

5 9 

No Yes Tennis 



Sky   Temperature Humidity Wind Tennis 

Sunny  Cold  Normal No Yes 

Sunny  Moderate  Normal Yes Yes 

Sunny  Hot  High No No 

Overcast Cold  Normal Yes Yes 

Sunny  Moderate  High No No 

Sky   Temperature Humidity Wind Tennis 

Sunny  Hot  High Yes No 

Overcast Hot  High No Yes  

Overcast Moderate High Yes Yes 

Overcast Hot  Normal No Yes 

Rainy  Moderate High No Yes 

Sky   Temperature Humidity Wind Tennis 

Rainy  Cold  Normal Yes No 

Rainy  Cold  Normal No Yes 

Rainy  Moderate  High Yes No 

Rainy  Moderate Normal No Yes 

Let’s suppose we have three computers, with data distributed among 

them: 



FIRST PARTITION (MAP) 

Sky   Temperature Humidity Wind Tennis 

Sunny  Cold  Normal No Yes 

Sunny  Moderate  Normal Yes Yes 

Sunny  Hot  High No No 

Overcast Cold  Normal Yes Yes 

Sunny  Moderate  High No No 

0 0 Rainy 

0 2 Overcast 

2 2 Sunny 

No Yes Sky 

0 2 Cold 

1 1 Moderate 

1 0 Hot 

No Yes Temperat

ure 

0 3 Normal 

2 0 High 

No Yes Humidity 

2 1 No 

0 2 Yes 

No Yes Wind 

2 3 

No Yes Tennis 

MAP / COMBINER 



SECOND PARTITION (MAP) 

0 1 Rainy 

0 3 Overcast 

1 0 Sunny 

No Yes Sky 

0 0 Cold 

0 2 Moderate 

1 2 Hot 

No Yes Temperat

ure 

0 1 Normal 

1 3 High 

No Yes Humidity 

0 3 No 

1 1 Yes 

No Yes Wind 

1 4 

No Yes Tennis 

Sky   Temperature Humidity Wind Tennis 

Sunny  Hot  High Yes No 

Overcast Hot  High No Yes  

Overcast Moderate High Yes Yes 

Overcast Hot  Normal No Yes 

Rainy  Moderate High No Yes 

MAP / COMBINER 



THIRD PARTITION (MAP) 

2 2 Rainy 

0 0 Overcast 

0 0 Sunny 

No Yes Sky 

1 1 Cold 

1 1 Moderate 

0 0 Hot 

No Yes Temperat

ure 

1 2 Normal 

1 0 High 

No Yes Humidity 

0 2 No 

2 0 Yes 

No Yes Wind 

2 2 

No Yes Tennis 

Sky   Temperature Humidity Wind Tennis 

Rainy  Cold  Normal Yes No 

Rainy  Cold  Normal No Yes 

Rainy  Moderate  High Yes No 

Rainy  Moderate Normal No Yes 

MAP / COMBINER 



0 0 Rainy 

0 2 Overcast 

2 2 Sunny 

No Yes Sky 

0 2 Cold 

1 1 Moderate 

1 0 Hot 

No Yes Temp 

0 3 Normal 

2 0 High 

No Yes Humidity 

2 1 No 

0 2 Yes 

No Yes Wind 

2 3 

No Yes Tennis 

0 1 Rainy 

0 3 Overcast 

1 0 Sunny 

No Yes Sky 

0 0 Cold 

0 2 Moderate 

1 2 Hot 

No Yes Temp 

0 1 Normal 

1 3 High 

No Yes Humidity 

0 3 No 

1 1 Yes 

No Yes Wind 

1 4 

No Yes Tennis 

2 2 Rainy 

0 0 Overcast 

0 0 Sunny 

No Yes Sky 

1 1 Cold 

1 1 Moderate 

0 0 Hot 

No Yes Temp 

1 2 Normal 

1 0 High 

No Yes Humidity 

0 2 No 

2 0 Yes 

No Yes Wind 

2 2 

No Yes Tennis 

2 3 Rainy 

0 4 Overcast 

3 2 Sunny 

No Yes Sky 

1 3 Cold 

2 4 Moderate 

2 2 Hot 

No Yes Temperatu

re 

1 6 Normal 

4 3 High 

No Yes Humidity 

2 6 No 

3 3 Yes 

No Yes Wind 

5 9 

No Yes Tennis 

MAP/COMBINER 

+ 

REDUCE 



MAP & REDUCE 

def mapper(key = (attribute, atr_value, class), value=NA) 

   # Example: mapper((“Sky”, “Sunny”, “Yes”), NA)  

   #    => result = ((“Sky”, “Sunny”, “Yes”), 1) 

emit(key=(atribute, atr_value, class), value = 1) 

 

 

def reducer(key=(attribute, atr_value, class), value) 

  # Example: reducer((“Humidity”, “High”, “No”), [2, 1, 1]) 

  #   => result = ((“Humidity”, “High”, “No”), 4) 

  emit(key=(atribute, atr_value, class), sum(value)) 

 

 

 



MAP & COMBINER & REDUCE 

def mapper(key = (attribute, atr_value, class), value=NA) 

   # Example: mapper((“Sky”, “Sunny”, “Yes”), NA)  

   #    => result = ((“Sky”, “Sunny”, “Yes”), 1) 

emit(key=(atribute, atr_value, class), value = 1) 

 

def combiner(key=(attribute, atr_value, class), value) 

  # Example: reducer((“Humidity”, “High”, “No”), [1, 1]) 

  #   => result = ((“Humidity”, “High”, “No”), 2) 

  emit(key=(atribute, atr_value, class), sum(value)) 

 

def reducer(key=(attribute, atr_value, class), value) 

  # Example: reducer((“Humidity”, “High”, “No”), [2, 1]) 

  #   => result = ((“Humidity”, “High”, “No”), 4) 

 

 

 



K-MEANS IN 
MAPREDUCE 



•Unsupervised Machine Learning (no label attribute) 

•Find the grouping structure in data by locating “clusters”: 

• High similarity between instances in the cluster 

• Low similarity between instances of different clusters 

Clustering 



Partitional clustering 

• Distribute data into K clusters. K is a parameter 

• Ill-defined problem: are clusters defined by 

closeness or by “contact”? 



Quadratic error 
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Loss or error function 

It can be formulated as a minimization problem: locate k prototypes so 

that a loss function is minimized 



Algorithm k-means (k)  

1. Initialize the location of the k prototypes kj 

  (usually, randomly)  

2. Assign each instance xi to its closest prototype  

 (usually, closeness = Euclidean distance).  

3. Update the location of prototypes kj as the 

average of the instances xi assigned to each 

cluster.  

4. Go to 2, until  clusters do not change 
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• How to program k-means in mapreduce? 

• Remember that the goal is that instances remain in their initial location. 

Algorithm k-means (k)  

1. Initialize the location of the k prototypes kj 

2. Assign each instance xi to its closest prototype  

3. Update the location of prototypes kj as the 

average of the instances xi assigned to each 

cluster.  

4. Go to 2, until  clusters do not change 



• Step 2 can be done for each instance independently of other instances. 

We assume that prototypes are few and can be sent to each computer 

through the network very fast. 

Algorithm k-means (k)  

1. Initialize the location of the k prototypes kj   

2. MAP = Assign each instance xi to its closest 

prototype   

3. Update the location of prototypes kj as the 

average of the instances xi assigned to each 

cluster.  

4. Go to 2, until  clusters do not change 



• Step 4 updates prototypes by computing the average of their instances 

Algorithm k-means (k)  

1. Initialize the location of the k prototypes kj   

2. Assign each instance xi to its closest prototype  

3. REDUCE = Update the location of prototypes kj 

as the average of the instances xi assigned to 

each cluster.  

4. Go to 2, until  clusters do not change 



MAPREDUCE FOR K-MEANS 

def mapper(key, value) = > (key, list of values) 

# key = instance number (irrelevant) 

# value = instance xi 

key’ = num. prototype 

value’ = instance xi 

emit(key’, value’) 

 

def reducer(key, list of values) => result 

# key = instance number 

# value = instance xi 

result = average of xi 

 

 

 



EFFICIENCY? 

• If map output is (num. prototype, xi), processing of instances is 
not actually local, because all data must travel from map 

computers to reduce computers. 

• Solution: use combiner functions, that perform a reduce 

locally:  map outputs are grouped by key and the sum of 

instances is computed.  Reduce functions are sent the sum of 

(local) instances and the number of (local) instances: (num. 

Prototype, sum of instances, num. of instances) 

• Reduce functions just add the partial sums of instances and 
divide by the total number of instances 



MAPREDUCE FOR K-MEANS 

def mapper(key, value) = > (key, list of values) 

# key = instance number (irrelevant) 

# value = instance xi 

key’ = num. prototype 

value’ = instance xi 

Emit(key’, value’) 

 
def combiner(key, list of values) => (key, value) 

# key = instance number 

# list fo values = instances xi 

value  = [sum of list-of-values, length of list-of-values]  

 
def reducer(key, list of (sum, length) ) => result 

# key = num of  prototype 

# value = [centroide parcial, num.de.valores usados para calcular el centroide parcial] 

result = sum of list-of-values / sum of length  
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