
Ricardo Aler Mur

• First it is explained what is meant by large scale machine learning, and

shown that there are several ways in which machine learning

algorithms can be parallelized: task, data, and pipeline parallelism

• Some examples of task parallelism are commented (mainly,

embarrasing parallelism or obvious parallelism).

• But the main kind of parallelism that is used nowadays is data

parallelism

• One of the main paradigms for data parallelism is MapReduce

• MapReduce is particularly useful when hundreds or thousands of

computers connected via a network are available, and data can be

partitioned into the different computers. The main idea of MapReduce

is not to move the data, but to move the processes to where data is

located.

• The MapReduce model is explained by explaining its main processes:

map, sort and shuffle, and reduce. An example for counting words is

explained. The combiner functions are explained to increase

efficiency.

• Three algorithms are programmed in the MapReduce model:

• KNN

• Decision trees (by distributing the computation of the entropy

function)

• The clustering algorithm k-means

• Finally, it is explained that nowadays data parallelism is moving

towards a new programming model called Spark, although many of

the MapReduce ideas are valid for Spark.

LARGE SCALE MACHINE LEARNING
- MAPREDUCE -

LARGE SCALE MACHINE LEARNING

• Increasing computational needs:

• Very large datasets (instances, attributes)

• Complex algorithms / large models: large ensembles,

computationally intensive optimization processes (deep learning,
…)

• Computationally intensive tasks: Crossvalidation, Hyper-parameter

tuning, algorithm selection (try knn, decision trees, …)

• Increasing computational power:

• Multicore (for example: i7 Intel computers have 4 real cores)

• Large computer networked clusters

• Alternative hardware: FPGAs (Field Programmable Gate Array),
GPUs (Graphics processing unit)

PARALELLISM

• Every year we have faster and faster computers,

but speed is becoming increasingly difficult. The

alternative is doing many things in parallel:

• Task parallelism: Different tasks running on the same data

• Data parallelism: The same task run on different data in

parallel.

• Pipeline parallelism: Output of one task is input for another

task

TASK PARALELLISM

• Different processes run on the same data

• Embarrassing paralallelism:

• Crossvalidation:

• cross_val(model, X, y, n_jobs=4, cv=3)

• Hyper-parameter tuning (grid search)

• GridSearchCV(model, n_jobs=4, cv=3).fit(X, y)

• Ensembles:

• RandomForestClassifier(n_jobs=4).fit(X, y)

• Check Olivier Grisel’s tutorial (“Strategies & Tools for

Parallel Machine Learning in Python)

• http://es.slideshare.net/ogrisel/strategies-and-tools-for-

parallel-machine-learning-in-python

PARALLELIZATION OF GRID SEARCH

MAX_DEPTH 2 4 6 8

MIN_SAMPLES

2 (2,2) (2,4) (2,6) (2,8)

4 (4,2) (4,4) (4,6) (4,8)

6 (6,2) (6,4) (6,6) (6,8)

Grid search means: try all possible combinations of values for the hyper-

parameters. Given that each combination is independent of the

others, they can be carried out in parallel.

PARALLELIZATION OF
CROSSVALIDATION

• For i in [1, 2, …, k]
• Learn model with all partitions but i

• Test model with partition i

• k independent iterations => they can be carried out

in parallel

PARALLELIZATION OF ENSEMBLES

• We will talk about ensembles in future lectures

• It involves building not one, but hundreds or

thousands of classifiers

• In one of the cases (Bagging and Random Forests),

the models are independent of each other, and

can be built in parallel.

“NON EMBARRASINGLY” PARALLELISM

• Not all algorithms are embarrasingly parallel

• For instance, it is not so easy to task-parallelize the

decision tree learning algorithm (i.e. it is not so easy

to decompose DT learning into subprocesses that

can be run in parallel)

• But, crossvalidation, grid-search, and ensembles are

processes that you are going to run, and probably

that’s all the task-parallelism (embarrasingly so) that

you will ever need

DATA PARALLELISM

• The same task running on different data, in parallel

…

LOCAL AREA NETWORK

BIG DATA

• Currently, Big Data means data parallelism

• Either:

• Data does not fit on a single computer

• or it takes too long to process on a single computer

• Three V’s:

• Volume: up to petabytes

• Velocity: streaming

• Variety: structured / unstructured (text, sensor data, audio, video,
click streams, log files, …)

• It takes advantage of commodity hardware farms

• Current programming models: Mapreduce (Yahoo),

Apache Spark, Dryad (Microsoft), Vowpal Wabbit

(Microsoft)

MOTIVATION

• Using available comodity hardware: basically,

thousands of standard PCs organized in racks and with

local hard disks

MAP REDUCE

• Programming model for data parallelism / distributed
computation

• Based on two operations:
• Map: executed in parallel in different computers

• Reduce: combines results produced by the maps

• The aim of the model is that heavy processing happens
locally (map processes), where the data is stored.
• Do not use the network, or use it as little as possible.

• Results produced by Map are much smaller in size, and can be
combined (reduced) in other computers.

• Origins: Google 2004 (page indices, etc. Several
petabytes daily)

• Used in Facebook, Linkedln, Tuenti, ebay, Yahoo, …

• Amazon AWS, Microsoft Azure, Google, … provide Map-
Reduce platforms (not for free)

MAP REDUCE DATA PARALLELISM

• Map processes do the heavy processing locally, where data resides

• Map results (very small in size), are partial results, that travel across

the network and are combined by the reducer into a final result.

…

LOCAL AREA NETWORK

MAP F MAP F MAP F REDUCE G

Partial
result

Partial
result

Partial
result

Final
result

First

data

partition

Second

data

partition

Third

data

partition

MAPREDUCE PROGRAMMING MODEL

• Inspired in functional programming: map and

reduce

• For instance, In Python:

COUNTING WORDS IN MAPREDUCE

• Let’s suppose we have a huge dataset with text (like the news datasets we

have already seen)

• Our aim is to count how many times each word appears in the dataset:

1. The huge dataset is split into different partitions (as many partitions as

hard disks)

2. Function map counts words in a text
• Note: each CPU / computer may be able to run several map functions in parallel (multicore)

3. Sort & shuffle: partial results from maps are grouped by key and delivered

to reduce functions in other computers via the network, depending on

keys. This is done automatically by the mapreduce system
• Note: output of map can be grouped by hashfunction(key) rather than key. The user is

responsible for defining the hashfunction

4. Function reduce adds occurrences of the same word

LOCAL AREA NETWORK

 M
A

P

MAP => SORT & SHUFFLE => REDUCE

First data partition

Second data partition M
A

P

R
E
D

U
C

E

 R
E
D

U
C

E

MAP AND REDUCE FUNCTIONS

• The programmer has to program two functions: map and reduce. “Sort &

Shuffle” is carried out automatically

• map(key, value)

=> [(key1, value1), (key2, value2), …, (keyn, valuen)]

• Sort and shuffle: (k1, v1), (k1, v2), …, (k1, vn), (k2, w1), …, (k2, wm), …

=> (k1, [v1, v2, …, vn]), (k2, [w1, w2, …, wm]), …

• reduce(k, [v1, v2, …, vn])

=> result

COUNTING WORDS IN MAPREDUCE.
EXAMPLE IN PYTHON

COMBINER FUNCTIONS

• There are additional operations that could be reduced in the local

computer, instead of being sent to a remote reducer.

• Example: (apple, 1), (apple, 1) and (apple, 1) can be added locally,

instead of being sent to the reducer via the network

• A combiner function is like a reducer, but it is executed in the same

computer as the map function

• combiner(k, [v1, v2, …, vn])
=> (k, result)

COMBINER

Apple, 3
Plum, 2
Mango, 1

Send to sort

& shuffle

and

reducer via

network

Notice that fewer

bytes are sent via
the network

Local computer

 M
A

P

COUNTING WORDS IN MAPREDUCE.
EXAMPLE IN PYTHON

• In the counting words

problem, the

combiner is just like

the reducer

FAILURE RECOVERY

• The output of maps is written to the

local hard disk, in addition to being

sent via the network

• If something fails, results can be

recovered from the local hard disk

Local computer
Send to sort

& shuffle

and

reducer via

network

Send to sort

& shuffle

and

reducer via

network

Local disk

 M
A

P

FAILURE RECOVERY

• The output of reducers (i.e. the final

results) is written to the distributed

Hadoop File System (HDFS) and made

available to the user

• This is different than writing to local disks

because it involves sending info via the

network

• HDFS is a distributed file system: a

unique file containing the results can be

distributed across different hard disks in

different computers in the network

• Additionally, the same file is replicated
several times (usually three) for

redundancy and recovery reasons

• If a single computer can fail once

every three years then, if the farm

contains 1000 computers, 2.7 of

them will fail every day!!

To: HDFS

(distributed

via network

with

replication)

HADOOP ECOSYSTEM

Pig

HADOOP ECOSYSTEM

• Preferred programming language is Java (but it can be done

with Python and R)

• Pig: data base platform. High level queries are translated to

Mapreduce. Language: Pig-latin

• Hive: similar to Pig, but closer to SQL. Language: HiveQL

• Mahout: Mapreduce-based Machine Learning library

• Mapreduce is quickly being superceded by Apache Spark:
“Apache Mahout, a machine learning library for Hadoop since 2009, is joining the exodus away
from MapReduce. The project’s community has decided to rework Mahout to support the
increasingly popular Apache Spark in-memory data-processing framework, as well as the H2O
engine for running machine learning and mathematical workloads at scale.”

• But most ideas of Mapreduce are similar in Spark

http://spark.apache.org/
http://0xdata.com/h2o-2/
http://0xdata.com/h2o-2/

KNN IN MAPREDUCE?

Anchalia, P. P., & Roy, K. The k-Nearest Neighbor Algorithm Using

MapReduce Paradigm.

PLANET: MASSIVELY PARALLEL
LEARNING OF TREE ENSEMBLES WITH

MAPREDUCE

DECISION TREES WITH MAP REDUCE

• PLANET: Massively Parallel Learning of Tree

Ensembles with MapReduce

• Biswanath Panda, Joshua S. Herbach, Sugato Basu,

Roberto J. Bayardo

• 2009

• Google, Inc.

PARALLEL LEARNING OF A DECISION
TREE

1. Learn different subtrees in different
computers

• Problem:

• either the entire dataset is available to all

computers (shared memory, or disk)

• or the entire dataset is replicated in all

computers (local disks or memory)

• or the appropriate subsets of data are sent

accross the network

2. Attribute selection: evaluate each

attribute in a different computer:
• Problem: similar to 1)

3. Evaluate different values of an

attribute in different computers
• Problem: similar to 1)

PARALLEL LEARNING OF A DECISION
TREE

• Can we partition the dataset from the beginning into

different computers and not move it around the

network?

• Can we formulate the problem in Mapreduce terms?

• The computation of the impurity measure (e.g.

entropy) can be distributed among processors

Entropy

)()(log
2
pp

Ci
Ci

Ci
PH 

Average entropy (H) computation for Sky

S T H W Ten

Sun

ny

85 85 No No

Sun

ny

80 90 Yes No

Sun

ny

72 95 No No

Sun

ny

69 70 No Yes

Sun

ny

75 70 Yes Yes

S T H W Ten

Outcast 83 86 No Yes

Outcast 64 65 Yes Yes

Outcast 72 90 Yes Yes

Outcast 81 75 No Yes

Sky
Sunny

Outcast
Rainy

S T H W Ten

Rainy 70 96 No No

Rainy 68 80 No Yes

Rainy 75 80 No Yes

Rainy 65 70 Yes No

Rainy 71 91 Yes No

“3 No, 2 Yes”

“0 No, 4 Yes”
“3 No, 2 Yes”

H = -(

(3/5)*log2(3/5) +

(2/5)*log2 (2/5)

)= 0.97

H = -(

(0/4)*log2 (0/4) +

(4/4)*log2 (4/4)

)=0

H = -(

(3/5)*log2 (3/5) +

(2/5)*log2 (2/5)

) = 0.97

Weighted average entropy for Sky

• Weighted average entropy for Sky:

• HP=(5/14)*0.97+(4/14)*0+(5/14)*0.97 = 0.69

• Note: there are14 instances in the data set

Discrete Tennis dataset

Sky Temperature Humidity Wind Tennis

Sunny Cold Normal No Yes

Sunny Moderate Normal Yes Yes

Sunny Hot High No No

Overcast Cold Normal Yes Yes

Sunny Moderate High No No

Sunny Hot High Yes No

Overcast Hot High No Yes

Overcast Moderate High Yes Yes

Overcast Hot Normal No Yes

Rainy Moderate High No Yes

Rainy Cold Normal Yes No

Rainy Cold Normal No Yes

Rainy Moderate High Yes No

Rainy Moderate Normal No Yes

Let’s see an example for selecting the best attribute for the root node

• In order to compute entropy for each attribute and

attribute value, it is necessary to compute the

following tables

2 3 Rainy

0 4 Overcast

3 2 Sunny

No Yes Sky

1 3 Cold

2 4 Moderate

2 2 Hot

No Yes Temperat

ure

1 6 Normal

4 3 High

No Yes Humidity

2 6 No

3 3 Yes

No Yes Wind

5 9

No Yes Tennis

Sky Temperature Humidity Wind Tennis

Sunny Cold Normal No Yes

Sunny Moderate Normal Yes Yes

Sunny Hot High No No

Overcast Cold Normal Yes Yes

Sunny Moderate High No No

Sky Temperature Humidity Wind Tennis

Sunny Hot High Yes No

Overcast Hot High No Yes

Overcast Moderate High Yes Yes

Overcast Hot Normal No Yes

Rainy Moderate High No Yes

Sky Temperature Humidity Wind Tennis

Rainy Cold Normal Yes No

Rainy Cold Normal No Yes

Rainy Moderate High Yes No

Rainy Moderate Normal No Yes

Let’s suppose we have three computers, with data distributed among

them:

FIRST PARTITION (MAP)

Sky Temperature Humidity Wind Tennis

Sunny Cold Normal No Yes

Sunny Moderate Normal Yes Yes

Sunny Hot High No No

Overcast Cold Normal Yes Yes

Sunny Moderate High No No

0 0 Rainy

0 2 Overcast

2 2 Sunny

No Yes Sky

0 2 Cold

1 1 Moderate

1 0 Hot

No Yes Temperat

ure

0 3 Normal

2 0 High

No Yes Humidity

2 1 No

0 2 Yes

No Yes Wind

2 3

No Yes Tennis

MAP / COMBINER

SECOND PARTITION (MAP)

0 1 Rainy

0 3 Overcast

1 0 Sunny

No Yes Sky

0 0 Cold

0 2 Moderate

1 2 Hot

No Yes Temperat

ure

0 1 Normal

1 3 High

No Yes Humidity

0 3 No

1 1 Yes

No Yes Wind

1 4

No Yes Tennis

Sky Temperature Humidity Wind Tennis

Sunny Hot High Yes No

Overcast Hot High No Yes

Overcast Moderate High Yes Yes

Overcast Hot Normal No Yes

Rainy Moderate High No Yes

MAP / COMBINER

THIRD PARTITION (MAP)

2 2 Rainy

0 0 Overcast

0 0 Sunny

No Yes Sky

1 1 Cold

1 1 Moderate

0 0 Hot

No Yes Temperat

ure

1 2 Normal

1 0 High

No Yes Humidity

0 2 No

2 0 Yes

No Yes Wind

2 2

No Yes Tennis

Sky Temperature Humidity Wind Tennis

Rainy Cold Normal Yes No

Rainy Cold Normal No Yes

Rainy Moderate High Yes No

Rainy Moderate Normal No Yes

MAP / COMBINER

0 0 Rainy

0 2 Overcast

2 2 Sunny

No Yes Sky

0 2 Cold

1 1 Moderate

1 0 Hot

No Yes Temp

0 3 Normal

2 0 High

No Yes Humidity

2 1 No

0 2 Yes

No Yes Wind

2 3

No Yes Tennis

0 1 Rainy

0 3 Overcast

1 0 Sunny

No Yes Sky

0 0 Cold

0 2 Moderate

1 2 Hot

No Yes Temp

0 1 Normal

1 3 High

No Yes Humidity

0 3 No

1 1 Yes

No Yes Wind

1 4

No Yes Tennis

2 2 Rainy

0 0 Overcast

0 0 Sunny

No Yes Sky

1 1 Cold

1 1 Moderate

0 0 Hot

No Yes Temp

1 2 Normal

1 0 High

No Yes Humidity

0 2 No

2 0 Yes

No Yes Wind

2 2

No Yes Tennis

2 3 Rainy

0 4 Overcast

3 2 Sunny

No Yes Sky

1 3 Cold

2 4 Moderate

2 2 Hot

No Yes Temperatu

re

1 6 Normal

4 3 High

No Yes Humidity

2 6 No

3 3 Yes

No Yes Wind

5 9

No Yes Tennis

MAP/COMBINER

+

REDUCE

MAP & REDUCE

def mapper(key = (attribute, atr_value, class), value=NA)

 # Example: mapper((“Sky”, “Sunny”, “Yes”), NA)

 # => result = ((“Sky”, “Sunny”, “Yes”), 1)

emit(key=(atribute, atr_value, class), value = 1)

def reducer(key=(attribute, atr_value, class), value)

 # Example: reducer((“Humidity”, “High”, “No”), [2, 1, 1])

 # => result = ((“Humidity”, “High”, “No”), 4)

 emit(key=(atribute, atr_value, class), sum(value))

MAP & COMBINER & REDUCE

def mapper(key = (attribute, atr_value, class), value=NA)

 # Example: mapper((“Sky”, “Sunny”, “Yes”), NA)

 # => result = ((“Sky”, “Sunny”, “Yes”), 1)

emit(key=(atribute, atr_value, class), value = 1)

def combiner(key=(attribute, atr_value, class), value)

 # Example: reducer((“Humidity”, “High”, “No”), [1, 1])

 # => result = ((“Humidity”, “High”, “No”), 2)

 emit(key=(atribute, atr_value, class), sum(value))

def reducer(key=(attribute, atr_value, class), value)

 # Example: reducer((“Humidity”, “High”, “No”), [2, 1])

 # => result = ((“Humidity”, “High”, “No”), 4)

K-MEANS IN
MAPREDUCE

•Unsupervised Machine Learning (no label attribute)

•Find the grouping structure in data by locating “clusters”:

• High similarity between instances in the cluster

• Low similarity between instances of different clusters

Clustering

Partitional clustering

• Distribute data into K clusters. K is a parameter

• Ill-defined problem: are clusters defined by

closeness or by “contact”?

Quadratic error

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

Loss or error function

It can be formulated as a minimization problem: locate k prototypes so

that a loss function is minimized

Algorithm k-means (k)

1. Initialize the location of the k prototypes kj

 (usually, randomly)

2. Assign each instance xi to its closest prototype

 (usually, closeness = Euclidean distance).

3. Update the location of prototypes kj as the

average of the instances xi assigned to each

cluster.

4. Go to 2, until clusters do not change

0

1

2

3

4

5

0 1 2 3 4 5

RANDOM INITIALIZATION OF
PROTOTYPES

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

ASSIGNING INSTANCES TO CLOSEST
PROTOTYPE

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

UPDATE PROTOTYPES
(AVERAGE)

k1

k2

k3

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

ASSIGNING INSTANCES TO CLOSEST
PROTOTYPE

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

expression in condition 1

e
x
p

re
s
s
io

n
 i
n

 c
o

n
d

it
io

n
 2

UPDATE PROTOTYPES
(AVERAGE)

k1

k2
k3

1 2 3 4 5 6 7 8 9 10

 k = 1 Error= 873.0

1 2 3 4 5 6 7 8 9 10

k = 2, Error = 173.1

1 2 3 4 5 6 7 8 9 10

 k = 3, Error = 133.6

0.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

6.00E+02

7.00E+02

8.00E+02

9.00E+02

1.00E+03

1 2 3 4 5 6 k

O
b

je
c

ti
v

e
 F

u
n

c
ti
o

n

¿K?

• How to program k-means in mapreduce?

• Remember that the goal is that instances remain in their initial location.

Algorithm k-means (k)

1. Initialize the location of the k prototypes kj

2. Assign each instance xi to its closest prototype

3. Update the location of prototypes kj as the

average of the instances xi assigned to each

cluster.

4. Go to 2, until clusters do not change

• Step 2 can be done for each instance independently of other instances.

We assume that prototypes are few and can be sent to each computer

through the network very fast.

Algorithm k-means (k)

1. Initialize the location of the k prototypes kj

2. MAP = Assign each instance xi to its closest

prototype

3. Update the location of prototypes kj as the

average of the instances xi assigned to each

cluster.

4. Go to 2, until clusters do not change

• Step 4 updates prototypes by computing the average of their instances

Algorithm k-means (k)

1. Initialize the location of the k prototypes kj

2. Assign each instance xi to its closest prototype

3. REDUCE = Update the location of prototypes kj

as the average of the instances xi assigned to

each cluster.

4. Go to 2, until clusters do not change

MAPREDUCE FOR K-MEANS

def mapper(key, value) = > (key, list of values)

key = instance number (irrelevant)

value = instance xi

key’ = num. prototype

value’ = instance xi

emit(key’, value’)

def reducer(key, list of values) => result

key = instance number

value = instance xi

result = average of xi

EFFICIENCY?

• If map output is (num. prototype, xi), processing of instances is
not actually local, because all data must travel from map

computers to reduce computers.

• Solution: use combiner functions, that perform a reduce

locally: map outputs are grouped by key and the sum of

instances is computed. Reduce functions are sent the sum of

(local) instances and the number of (local) instances: (num.

Prototype, sum of instances, num. of instances)

• Reduce functions just add the partial sums of instances and
divide by the total number of instances

MAPREDUCE FOR K-MEANS

def mapper(key, value) = > (key, list of values)

key = instance number (irrelevant)

value = instance xi

key’ = num. prototype

value’ = instance xi

Emit(key’, value’)

def combiner(key, list of values) => (key, value)

key = instance number

list fo values = instances xi

value = [sum of list-of-values, length of list-of-values]

def reducer(key, list of (sum, length)) => result

key = num of prototype

value = [centroide parcial, num.de.valores usados para calcular el centroide parcial]

result = sum of list-of-values / sum of length

REFERENCE

• Weizhong Zhao1, Huifang Ma1, and Qing He.

Parallel K-Means Clustering Based on MapReduce.

Cloud Computing. 2009.

SPARK

HADOOP LIMITATIONS

SPARK ECOSYSTEM

PYSPARK

