Ricardo Aler Mur

- In this lecture, the Machine Learning subject is introduced by using a classification task example, where sky objects have to be classified, that illustrates the main processes that must be followed in other classification tasks. Also, some application examples are used to illustrate the possible domains of application of Machine Learning.
- Then, three main concepts are introduced:
 - What can be done (tasks)
 - What kind of models can be learned to solve those tasks
 - Each type of model can be genereted by several different algorithms
- Finally, each kind of task is illustrated by giving an example, showing what the input data looks like and how the obtained models can be interpreted.

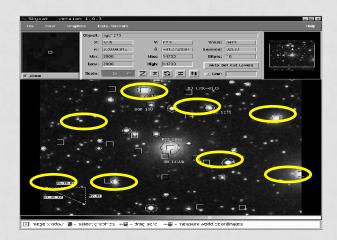
PRESENTATION MACHINE LEARNING I MASTER IN BIG DATA ANALYTICS

RICARDO ALER MUR (<u>aler@inf.uc3m.es</u>). 2.2B29

MACHINE LEARNING

• In general, it's a subfield of **Artificial Intelligence** that tries to make computers and machines learn

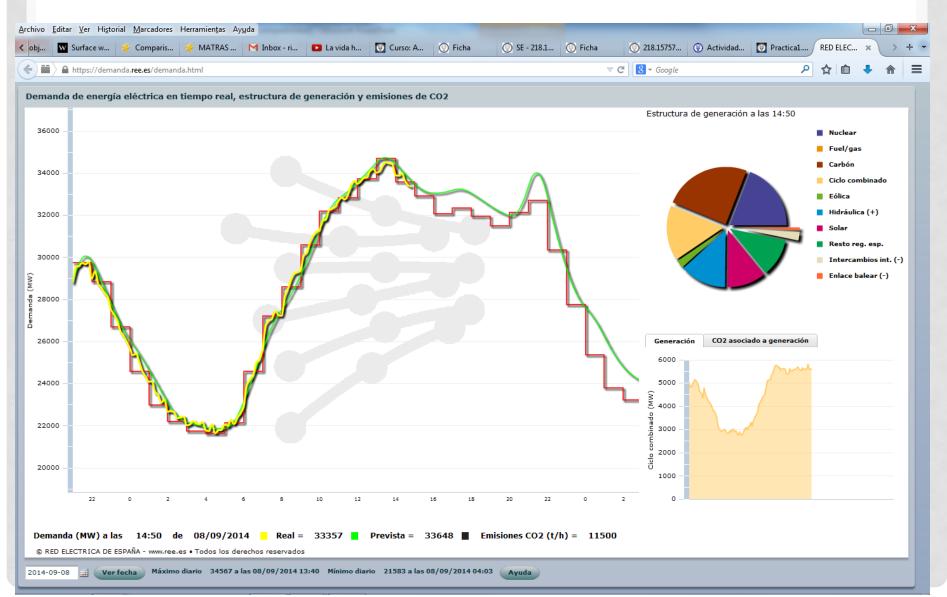
 In practice, it tries to create models from data and thus is closely related to statistics. This is the point of view we will follows in this course


WHAT IS MACHINE LEARNING

• Example: Skycat: AUTOMATIC CLASSIFICATION OF OBJECTS IN THE SKY

Training data (labeled pictures of sky objects: galaxies, stars, nebulae, ...)

ML Algorithm Model J Spiral galaxy


Pictures in the catalog have been labeled by a human expert (astronomer)

APPLICATIONS

- Finances and banking
 - Credit card fraud detection
 - Credit default prediction
- Market analysis:
 - Market basket analysis
 - Market segmentation
- Insurance:
 - Expensive clients
- Education:
 - Prediction of school dropouts
- Industry:
 - Electric (energy) load forecasting
 - Solar / wind energy forecasting

https://demanda.ree.es/demanda.html

ELECTRIC LOAD FORECASTING

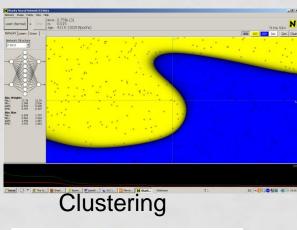
APPLICATIONS II

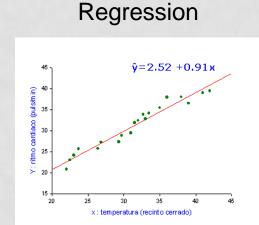
- Medicine:
 - Illness diagnosis
- Science:
 - Illness prediction from DNA analysis
 - Prediction if a new substance causes cancer
 - SKYCAT
- Internet:
 - Spam detection (SpamAssassin)
 - Web: book recommendation (amazon.com)

Descripción del producto

Descripción del producto

Concebida en un primer momento como una continuación de El Hobbit, acabó por convertirse en una historia independiente por derecho propio de mucho más alcance y extensión. En 1999 la trilogía de El Señor de los Anillos fue elegida como «Libro del Milenio» por los participantes de una encuesta de Amazon.com. En la adormecida e idílica Comarca, un joven hobbit recibe un encargo: custodiar el Anillo Único y emprender el viaje para su destrucción en las Grietas del Destino. Consciente de la importancia de su misión, Frodo abandona la Comarca e inicia el camino hacia Mordor con la compañía inesperada de Sam, Pippin y Merry. Pero sólo con la ayuda de Aragorn conseguirán vencer a los Jinetes Negros y alcanzar el refugio de la Casa de Elrond en Rivendel.

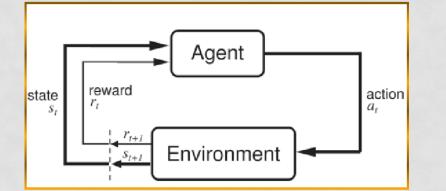

SYLLABUS

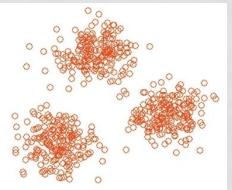

- 1. Overview and introduction to Machine Learning: tasks and models.
- 2. Predictive models:
 - Decision trees, regression trees
 - K Nearest Neighbour (KNN)
 - Machine Learning pipeline: training, => ML algorithm => model => test / evaluation. Preprocessing, hyperparameter tuning, ...
- 3. Ensemble methods: bagging, boosting, stacking
- 4. Preprocessing: selection of attributes and methods of dimensionality reduction
- 5. Machine learning software for Big Data:
 - 1. Python: scikit-learn, numpy
 - 2. Mapreduce
 - 3. Spark: pyspark, MLLIB
- 6. Other topics:
 - 1. Online learning
 - 2. Metaheuristics: genetic algorithms, genetic programming, ...

TASKS AND ALGORITHMS

What can be done?

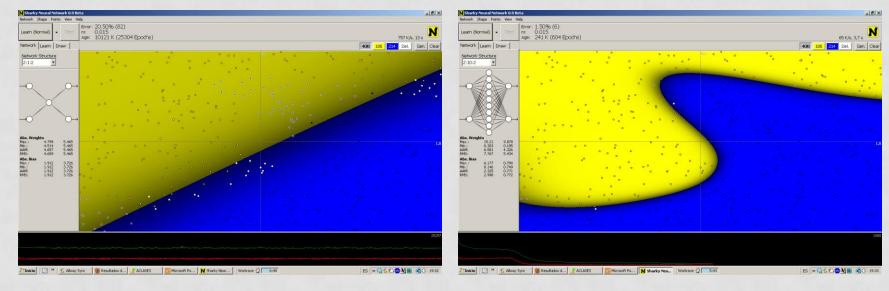
Classification





Market basket analysis

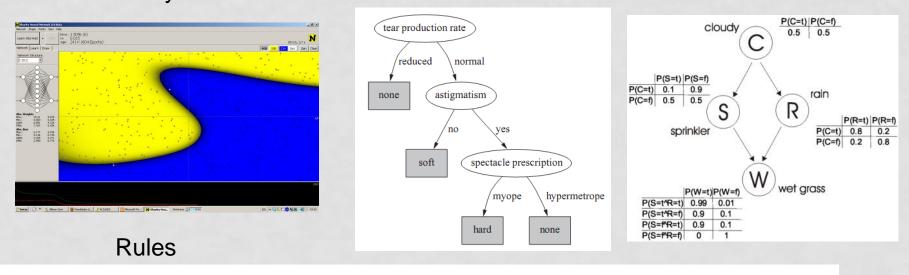
Reinforcement learning



MODELS

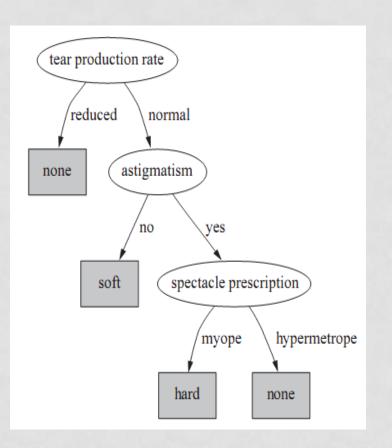
• What models can be obtained?

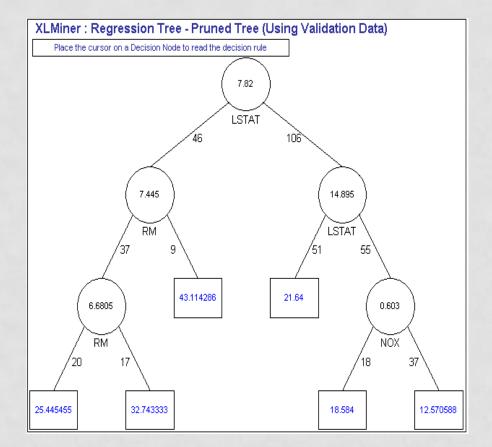
Linear


Non linear

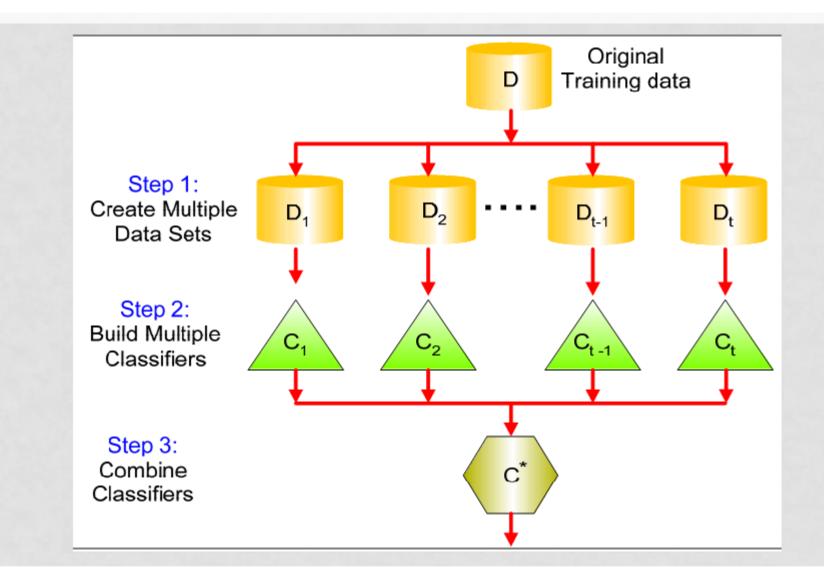
MODELS

What models can be obtained? Functions: y= 3*x³+2 Decision trees

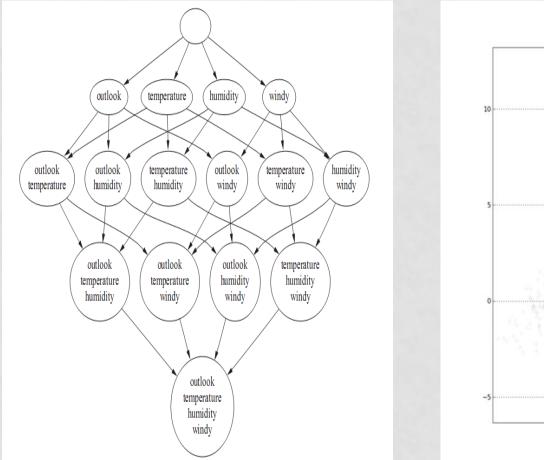

Bayesian networks



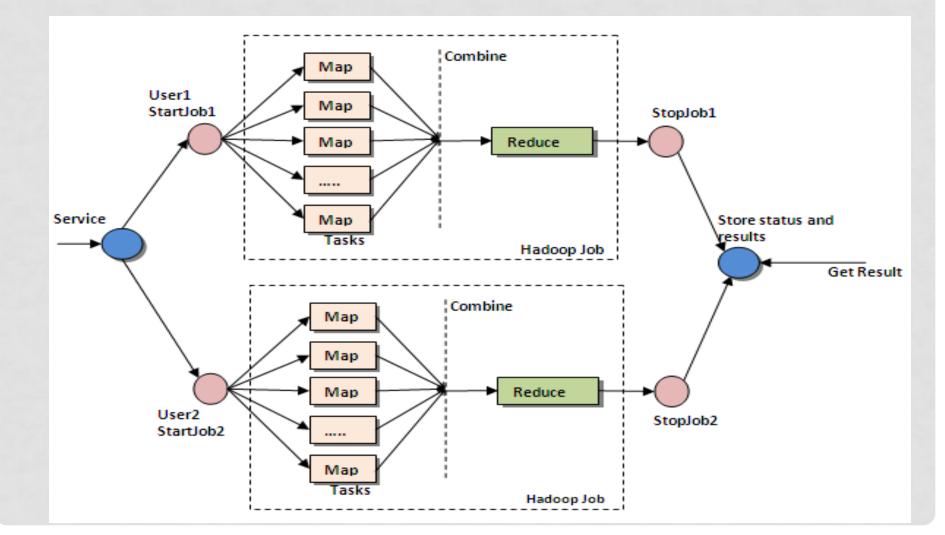
If humidity = normal and windy = false then play = yes


And many more: neural networks, nearest neighbor, ...

Decision trees and regression trees



Ensembles of classifiers


ATTRIBUTE SELECTIÓN AND TRANSFORMATION

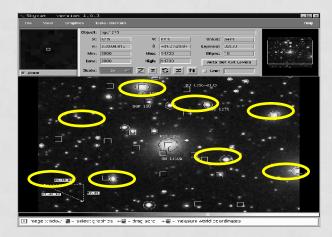
Principal Component Analysis and Random Projections

Attribute selection

BIG DATA / MAP-REDUCE, SPARK (MLLIB)

TASKS / MODELS / ALGORITHMS

• <u>What can be done? Tasks</u>:


- Supervised ML: classification, regression, ...
- Unsupervised ML: clustering, association, ...
- Semi-supervised ML
- Reinforcement learning

What kind of models can be learned?

- Attribute-value:
 - Trees
 - Nearest neighbor
 - Functions: neural networks, support vector machines, ...
 - Bayesian networks
 - Ensembles (bagging, boosting, stacking, ...)
- Relational
- How can models be learned? Algorithms:
 - Linear models: linear regression, simple perceptron, naive bayes, SVM with linear kernel, ...
 - Neural networks: backpropagation, rprop, ...
 - Decision trees: ID3, C4.5, C5.0, ...
 - Nearest neighbour: IB1, ...

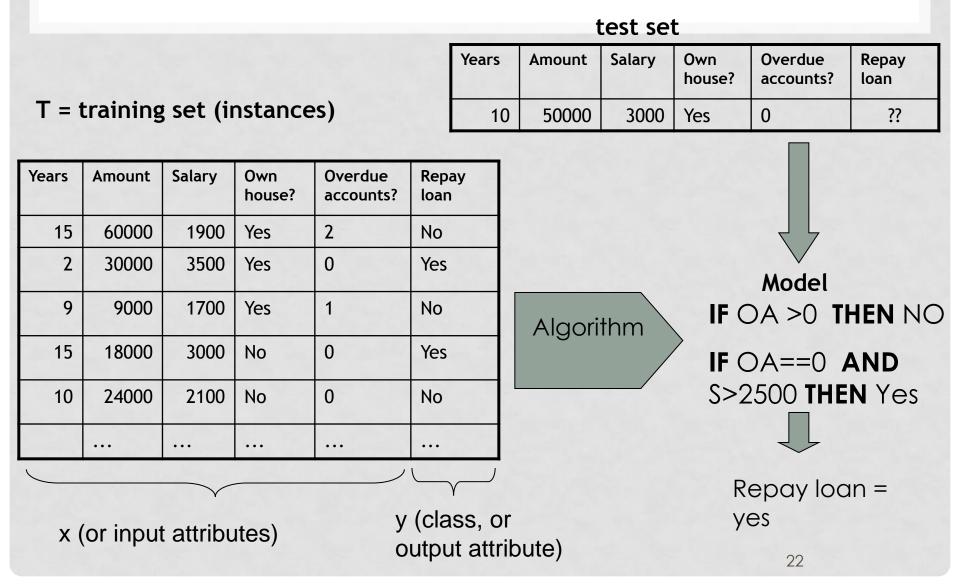
Training data (labeled pictures of sky objects: galaxies, stars, nebulae, ...)

ML Algorithm Model Model

Pictures in the catalog have been labeled by a human expert (astronomer) Spiral galaxy

TASKS

Inductive learning (from instances)

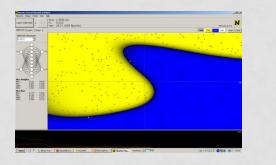

- Supervised learning:
 - Classification:
 - Regression
- Semi-supervised learning
- Unsupervised learning:
 - Clustering
 - Association
- Reinforcement learning

CLASSIFICATION TASK. AN EXAMPLE:

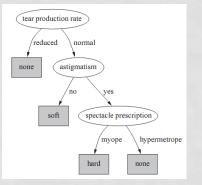
• Bank credit approval:

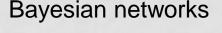
- An Internet bank owns a large data base with information about clients whose credits were approved or rejected
- The banks requires a model to determine if a new customer will repay the loan or not
- Instances (client records in the database):
 - Input attributes : credit time-length (years), amount, overdue accounts?, own house?
 - Class: yes/no
- Rule-based model:
 - IF (overdue accounts > 0) THEN repay loan = no
 - IF (overdue accounts = 0) AND ((salary > 2500) OR (years > 10)) THEN repay loan = yes

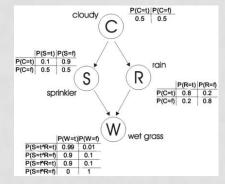
CLASSIFICATION TASK. AN EXAMPLE:


IMPORTANT: MODELS

 In the previous slide, the model built from training data is a set of rules:


IF OA >0 THEN NO ELSEIF OA==0 AND S>2500 THEN Yes

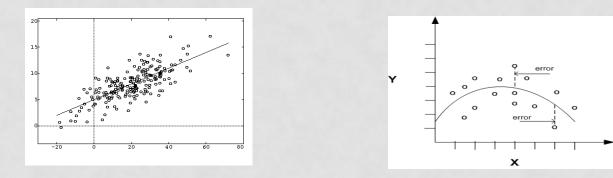

• But there are many more that can be learned:


Functions: $y = 3^*x^3+2$

Decision trees

And many more: neural networks, nearest neighbor, support vector machines (SVMs).

TASKS

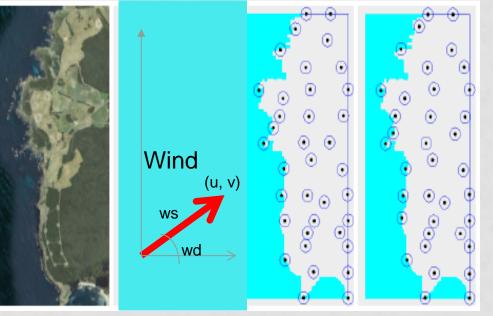

Inductive learning (from instances)

Supervised learning:

- Classification
- Regression
- Semi-supervised learning
- Unsupervised learning:
 - Clustering
 - Association
- Reinforcement learning

REGRESSION

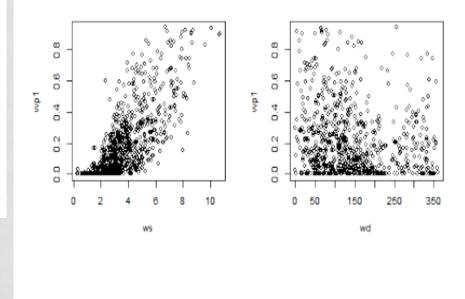
- If the class is continuous, it is a **regression** problem
- Models are typically mathematical functions y=g(x)
 - Linear: y = ax+b
 - Non linear: $y = a^*x^2+bx+c / y = log(sin(x))$

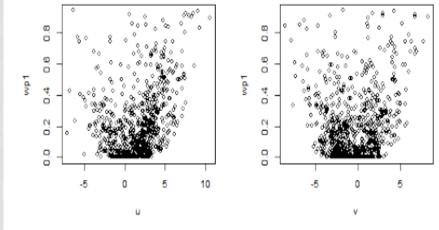

REGRESSION EXAMPLE

• A wind power forecasting problem: predicting hourly power generation at 7 wind farms

Some input variables:

- ws: wind speed
- wd: wind direction
- (u,v): wind direction vector


Model to estimate electricity production from ws, wd, u, v? wp = f(ws, wd, u, v, ...)


REGRESSION EXAMPLE

DATA		date	hors	u	V	WS	wd	dateB	wp1
	1 2009-07-01	01:00:00	1	2.34	-0.79	2.47	108.68	2009-07-01	0.085
	2 2009-07-01	02:00:00	2	2.18	-0.99	2.40	114.31	2009-07-01	0.020
	3 2009-07-01	03:00:00	3	2.20	-1.21	2.51	118.71	2009-07-01	0.060
	4 2009-07-01	04:00:00	4	2.35	-1.40	2.73	120.86	2009-07-01	0.045
	5 2009-07-01	05:00:00	5	2.53	-1.47	2.93	120.13	2009-07-01	0.035
	6 2009-07-01	06:00:00	6	2.66	-1.29	2.96	115.79	2009-07-01	0.005

Some input variables:

- ws: wind speed
- wd: wind direction
- (u,v): wind direction vector

REGRESSION EXAMPLE

DATA		date	hors	u	v	WS	wd	dateB	wp1
	1 2009-07-01	01:00:00	1	2.34	-0.79	2.47	108.68	2009-07-01	0.085
	2 2009-07-01	02:00:00	2	2.18	-0.99	2.40	114.31	2009-07-01	0.020
	3 2009-07-01	03:00:00	3	2.20	-1.21	2.51	118.71	2009-07-01	0.060
	4 2009-07-01	04:00:00	4	2.35	-1.40	2.73	120.86	2009-07-01	0.045
	5 2009-07-01	05:00:00	5	2.53	-1.47	2.93	120.13	2009-07-01	0.035
	6 2009-07-01	06:00:00	6	2.66	-1.29	2.96	115.79	2009-07-01	0.005

Linear model:
wp = f(ws, wd, u, v)
wp =
$$a_1^*ws + a_2^*wd + a_3^*u + a_4^*v + b$$

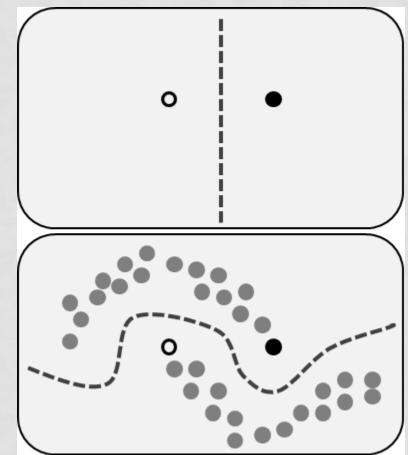
Obviously, a non-
linear model could do
better

ws

wd

TASKS

Inductive learning (from instances)

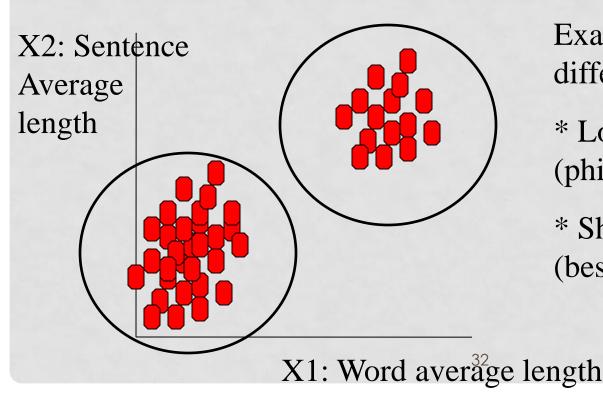

- Supervised learning:
 - Classification
 - Regression

Semi-supervised learning

- Unsupervised learning:
 - Clustering
 - Association
- Reinforcement learning

SEMISUPERVISED LEARNING

- When both labelled and unlabelled instances are available
- Why: labelling instances may be costly (ex: to perform a biopsy to determine if a person has cancer)


TASKS

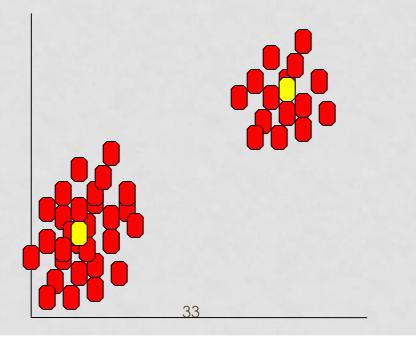
Inductive learning (from instances)

- Supervised learning:
 - Classification
 - Regression
- Semi-supervised learning
- Unsupervised learning:
 - Clustering
 - Association
- Reinforcement learning

UNSUPERVISED LEARNING (NO LABELS): CLUSTERING

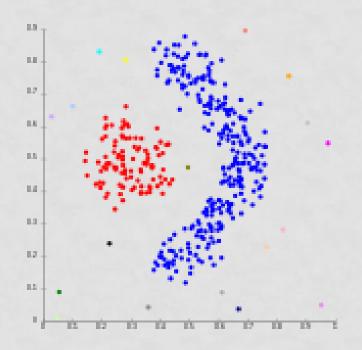
 To determine natural clusterings in instance space, based on the input attributes (no labels)

Example:each point is a different book. 2 groups:


* Long words and sentences (philosophy?)

* Short words and sentences (best-sellers?)

CLUSTER REPRESENTATION


Most commonly: centroids (ex: k-means algorithm)

K-MEANS: http://www.youtube.com/watch?v=74rv4snLI70

CLUSTERING

 Clustering is not so well defined as classification: clustering based on neighbourhood or connectivity?

CLUSTERING EXAMPLE

• Human resources department would like to cluster employees in order to understand the different types of employee and treat them accordingly (fire problematic workers? ③).

CLUSTERING EXAMPLE. TRAINING DATA

Id	Salary	Married	Car	Offsp ring	Own- house	Syndicate	Sick leave	Years working	Sex
1	1000	Yes	No	0	No	No	7	15	М
2	2000	No	Yes	1	No	Yes	3	3	F
3	1500	Yes	Yes	2	Yes	Yes	5	10	М
4	3000	Yes	Yes	1	No	No	15	7	F
5	1000	Yes	Yes	0	Yes	Yes	1	6	F

MODEL (CLUSTERS)

	GROUP 1	GROUP 2	GROUP 3
Salary	1535	1428	1233
Married (No/Yes)	77%/22%	98%/2%	0%/100%
Car	82%/18%	1%/99%	5%/95%
Offspring	0.05	0.3	2.3
Own-house	99%/1%	75%/25%	17%/83%
Syndicated	80%/20%	0%/100%	67%/33%
Sick leave	8.3	2.3	5.1
Years working	8.7	8	8.1
Sex (M/W)	61%/39%	25%/75%	83%/17%

MODEL (CLUSTERS)

- Cluster 1: No offspring and rented house. Low level of syndication. Lots of sick leaves
- Cluster 2: No offspring and own-car. High syndication level. Few sick leaves. Tipically women living in rented houses
- Cluster 3: Married men with children and owncar and own-houses. Low syndication level

TASKS

Inductive learning (from instances)

- Supervised learning:
 - Classification
 - Regression
- Semi-supervised learning
- Unsupervised learning:
 - Clustering
 - Association
- Reinforcement learning

MARKET BASKET ANALYSIS (ASSOCIATION)

- A supermarket needs to know customer behavior.
 - Ex: if customer buys X then s/he also buys Y
- Service might be improved (putting together products bought together, etc.)

TRAINING DATA (CUSTOMER BASKETS)

ld	Eggs	Oil	Napies	Wine	Milk	Butter	Salmon	Lettuce	
1	Yes	No	No	Yes	No	Yes	Yes	Yes	••••
2	No	Yes	No	No	Yes	No	No	Yes	
3	No	No	Yes	No	Yes	No	No	No	
4	No	Yes	Yes	No	Yes	No	No	No	
5	Yes	Yes	No	No	No	Yes	No	Yes	
6	Yes	No	No	Yes	Yes	Yes	Yes	No	
7	No	No	No	No	No	No	No	No	
8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	
•••	•••	•••		•••	•••		•••	•••	••

MODEL

- Rules IF $At_1 = a$ AND $At_2 = b y \dots$ THEN $At_n = c$
 - IF nappies=Yes THEN milk=Yes
 - IF butter = Yes AND salmon = Yes THEN wine = Yes
- Also: IF $At_1 = a$ AND $At_2 = b$ THEN $At_n = c$, $At_4 = D$

Service might be improved (putting together nappies and milk, etc.)

ASSOCIATION

Firefox 🔻	MInbox (436)	𝒴 colectivo bur	🕦 Colectivo Bur	Actividad aca	🛞 Listas de clase	🛞 Listas de clase	8 inductive logi	O! SLIDES WEK	🔛 Data Mining:	🤹 Amazon.c 🗙	> + -		_ 8 ×
♦ ⇒ [🛞 www. amazon.com /Data-Min	ing-Practical-Techniq	ues-Management/dp;	0123748569/ref=sr	_1_1?ie=UTF8&qid=1	13472165338sr=8-18	keywords=weka+bo	ook 🏫 🛡 🖸	⊗!		٩	⋒	

*Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects *Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods *Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks-in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering,

Show More

Special Offers and Product Promotions

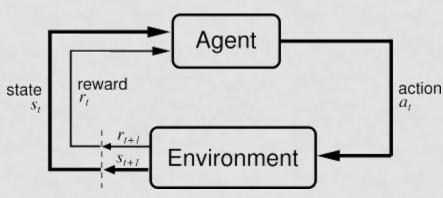
- Buy \$25 or more in Textbooks, get a \$5 Amazon MP3 Credit. Here's how (restrictions apply)
- FREE One-Day Shipping if you purchase this item using your Discover Card. Enter code DSCVRFSP at checkout. Here's how (restrictions apply)

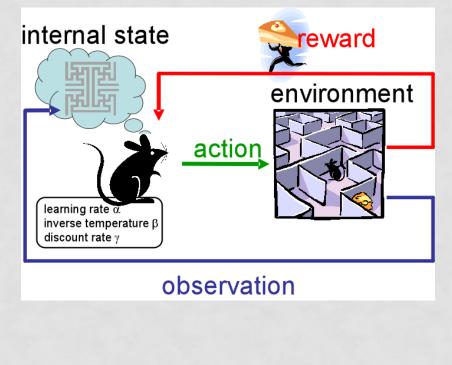
Frequently Bought Together

This item: Data Mining: Practical Machine Learning Tools and Techniques, Third Edition (The Morgan Kaufmann Series in Data Management Systems) by Ian H. Witten Paperback \$40.88

Data Mining: Concepts and Techniques, Third Edition (The Morgan Kaufmann Series in Data Management Systems) by Jiawei Han Hardcover \$53.19

Customers Who Bought This Item Also Bought


TASKS


Inductive learning (from instances)

- Supervised learning:
 - Classification
 - Regression
- Semi-supervised learning
- Unsupervised learning:
 - Clustering
 - Association
- Reinforcement learning

TASK: REINFORCEMENT LEARNING

- The goal of learning is a "policy" π so that the agent (mouse) knows what to do at each situation (in the case of the mouse, a situation is a particular location within the maze). Robotics.
- Actions:
 - forward
 - turn left
 - turn right

TASKS

Inductive learning(from instances)

- Attribute-value models
 - Supervised learning:
 - Semi-supervised learning
 - Unsupervised learning:
 - Reinforcement learning
- Relational learning

Relational Learning

- For instance, learn the concept of "being a daughter"
- IF X is female AND Y is the mother of Y THEN X is a daugther of Y
- Compare this rule with:

IF Overdue Accounts ==0 **AND** Salary >2500 **THEN** Repay loan = Yes

Relational rules use variables (X, Y) and relations

Relational Learning: ILP (inductive logic programming

Training examples		Background knowledge				
daughter(mary, ann).	\oplus	parent(ann, mary).	female(ann).			
daughter(eve, tom).	\oplus	parent(ann, tom).	female(mary).			
daughter(tom, ann).	θ	parent(tom, eve).	female(eve).			
daughter(eve, ann).	θ	parent(tom, ian).				

Learned Knowlege:

 $daughter(X,Y) \leftarrow female(X), mother(Y,X).$ $daughter(X,Y) \leftarrow female(X), father(Y,X).$

Bibliography

SCIKIT-LEARN

- Learning scikit-learn: Machine Learning in Python:
 - http://m.proquest.safaribooksonline.com/hd/catalog?isbn=9781783281930
- Mastering Machine Learning with scikit-learn:
 - http://m.proquest.safaribooksonline.com/hd/catalog?isbn=9781783988365
- scikit-learn Cookbook
 - http://m.proquest.safaribooksonline.com/hd/catalog?isbn=9781783989485

SPARK

- Holden Karau, Andy Konwinski, Patrick Wendell, Matei Zaharia, Learning Spark, O'Reilly Media, 2015. ISBN: 978-1-449-35862-4
- Sandy Ryza, Uri Laserson, Sean Owen, Josh Wills, Advanced Analytics with Spark, O'Reilly, 2015. ISBN: 978-1-491-91276-8