
Ricardo Aler Mur

• The main goal of this lecture is threefold:

• To describe the basic machine learning pipeline (the sequence of

processes that are typically followed in Machine Learning).

• To explain some basic concepts: instances, attributes, and

instance space.

• To describe two of the basic Machine Learning algorithms: K-

nearest neighbours and decision trees.

• About the KNN algorithm:

• KNN is explained both for classication and regression.

• Some of the advanges of KNN are explained (the main one being

that it is not necessary to build an explicit model), and the

inconveniences (slowness in classificating new instances, the

problem with irrelevant attributes, the curse of dimensionality, and

the problems with noise)

• It is shown what the K means, its influence on classification and how

to select it.

• About the decision tree algorithm:

• The algorithm that builds decision trees is explained via an example

• It is shown that the algorithm is recursive and basically amounts to

choosing the best attribute at each node, by minimizing a measure

called entropy.

• It is shown how to extend the basic algorithm to regression tasks, via

model trees and regression trees. In this case, the measure to

minimize is variance, instead of entropy.

BASIC MODELS: NEAREST NEIGHBOURS
AND TREE-BASED MODELS

Machine Learning Pipeline for classification
(and regression)

No Yes 91 71 Rainy

Yes No 75 81 Outc

ast

Yes Yes 90 72 Outc

ast

Yes Yes 70 75 Sunn

y

Yes No 80 75 Rainy

Yes No 70 69 Sunn

y

No No 95 72 Sunn

y

Yes Yes 65 64 Outc

ast

Yes No 80 68 Rainy

So No 96 70 Rainy

Yes No 86 83 Outc

ast

No Yes 90 80 Sunn

y

No No 85 85 Sunn

y

Tennis Wind Humidity Temperature Sky

ML

Algorithm

IF Sky = Sunny AND

Humidity <= 75

THEN Tennis = Yes ...

????? No 65 60 Sunny

Tennis Wind Humidity Tempe

rature

Sky

Class = Yes

Training Data

Model (Classifier)

Prediction

In
st

a
n

c
e

s,
 e

x
a

m
p

le
s

Attributes, features,

Input variables,
Independent variables

Label, class, output variable,
dependent variable

Test data

DEFINITIONS: ATTRIBUTES AND LABEL

• Attributes / features

• A feature is an individual measurable property of an instance,

represented as a number
• Types:

• In general, real numbers:
• 0, 1, 2

• 1.3, 7.9, 10.798, …

• Categorical: red / green / yellow
• Ordinal: cold, lukewarm, hot

• Typically, they are encoded as integer numbers

• Class / label

• If categorical (e.g. cancer / no cancer) => classification problem

• If real / integer number => regression problem

DEFINITIONS: INSTANCE SPACE

• Instances, examples, = tuples
• In general, they inhabit a d-dimensional space (instance space)
• (input, output) = (xi,y) = (xi1, xi2, …, xid, y)∈ (Rd,Y)

• Note: boldface means vector
• This instance has 4 inputs and 1 output. It inhabits a 4-dimensional space

• In 2-dimensions (2 attributes), each instance is a point in instance space

Yes No 65 60 Sunny

Tennis

y

Wind

x4

Humidity

x3

Temperature

x2

Sky

x1

• Example: classify plants into two classes ("versicolor“ / red vs.

"virginica“ / blue)

• 2 attributtes = (Petal.Width, Petal.Length) = 2 dimensions

• Classification = finding a boundary between the classes

Instance space in 2 dimensions

INSTANCE SPACE IN REGRESSION

• In the following case, there is one input variable and an

output variable (continuous “label”)

• Regression = finding a function that transforms the inputs

into the output

Input attribute C
o

n
ti
n

u
o

u
s

“
la

b
e

l”
 o

r
o

u
tp

u
t

a
tt

ri
b

u
te

MODELS (CLASSIFICATION): RULES

No Yes 91 71 Rainy

Yes No 75 81 Outc

ast

Yes Yes 90 72 Outc

ast

Yes Yes 70 75 Sunn

y

Yes No 80 75 Rainy

Yes No 70 69 Sunn

y

No No 95 72 Sunn

y

Yes Yes 65 64 Outc

ast

Yes No 80 68 Rainy

So No 96 70 Rainy

Yes No 86 83 Outc

ast

No Yes 90 80 Sunn

y

No No 85 85 Sunn

y

Tennis Wind Humidity Temperature Sky

ML

Algorithm

IF Sky = Sunny AND

Humidity <= 75

THEN Tennis = Yes ...

????? No 65 60 Sunny

Tennis Wind Humidity Tempe

rature

Sky

Class = Yes

Training Data

Model (Classifier)

Prediction

In
st

a
n

c
e

s,
 e

x
a

m
p

le
s

Attributes, features,

Input variables,
Independent variables

Label, class, output variable,
dependent variable

Test data

RULES

MODELS: DECISION TREES

No Yes 91 71 Rainy

Yes No 75 81 Outc

ast

Yes Yes 90 72 Outc

ast

Yes Yes 70 75 Sunn

y

Yes No 80 75 Rainy

Yes No 70 69 Sunn

y

No No 95 72 Sunn

y

Yes Yes 65 64 Outc

ast

Yes No 80 68 Rainy

So No 96 70 Rainy

Yes No 86 83 Outc

ast

No Yes 90 80 Sunn

y

No No 85 85 Sunn

y

Tennis Wind Humidity Temperature Sky

ML

Algorithm

????? No 65 60 Sunny

Tennis Wind Humidity Tempe

rature

Sky

Class = Yes

Training Data

Model (Classifier)

Prediction

In
st

a
n

c
e

s,
 e

x
a

m
p

le
s

Attributes, features,

Input variables,
Independent variables

Label, class, output variable,
dependent variable

Test data

DECISION TREE

MODELS: MANY OTHERS

No Yes 91 71 Rainy

Yes No 75 81 Outc

ast

Yes Yes 90 72 Outc

ast

Yes Yes 70 75 Sunn

y

Yes No 80 75 Rainy

Yes No 70 69 Sunn

y

No No 95 72 Sunn

y

Yes Yes 65 64 Outc

ast

Yes No 80 68 Rainy

So No 96 70 Rainy

Yes No 86 83 Outc

ast

No Yes 90 80 Sunn

y

No No 85 85 Sunn

y

Tennis Wind Humidity Temperature Sky

ML

Algorithm

????? No 65 60 Sunny

Tennis Wind Humidity Tempe

rature

Sky

Class = Yes

Training Data

Model (Classifier)

Prediction

In
st

a
n

c
e

s,
 e

x
a

m
p

le
s

Attributes, features,

Input variables,
Independent variables

Label, class, output variable,
dependent variable

Test data

• Nearest neighbor
• Ensembles (bagging, boosting,

stacking, …)
• Functions: neural networks, support

vector machines, deep learning, …
• Naive bayes, bayesian networks

KNN: K-NEAREST
NEIGHBOURS

K-NEAREST NEIGHBORS (KNN)

Weight

Height
Child

Adult

Old

Model = all training instances

are stored

Training

14

K-NEAREST NEIGHBORS (KNN)

K=1
Child

Adult

Aged

Test instance

Height

Weight

Testing

Prediction = Adult (closest training

instance)

K-NEAREST NEIGHBORS (KNN)

K=3

K> 2 => classify new instances as the majority class of the k-nearest neighbours

Test instance

Neighbourhood

with k=3

Triangles = 2

Squares = 1

Prediction (majority class

in the neighbourhood) =

Triangle

KNN FOR REGRESSION

7.3

5.1

2.7

It can be easily

extended for regression

by computing the

average of the k-

nearest neighbours

Prediction = (7.3+2.7+5.1)/3

Neighbourhood

with k=3

WHY USE K>1?

K=1

VORONOI TESSELLATION in Instance space

WHY USE K>1?

WHY USE K>1?

• With k=1, noisy instances (i.e. class overlap) have a

large influence

• With k>1, more neighbors are considered and noisy

instances have less influence (it is like averaging)

• But if k is very large, locality is lost

• What is KNN if k=number of instances?

• If the number of classes is two, use odd k in order to

avoid draws

• K is a parameter of the algorithm (a hyperparameter,

actually) and the correct value has to be found out.

Hyperparameter tuning is part of the ML pipeline, and

we will talk about it in future lectures

SUMMARY OF KNN

• KNN classifies test instances as the majority class in

the neighbourhood of the training set

• KNN is a lazy ML algorithm

• During training, no model is constructed, but all training
instances are stored (model = training instances)

• It is based on the idea that the best model of data

is the data itself

• It can be easily extended for regression by

computing the average of the k-nearest neighbours

LIMITATIONS OF KNN

• Slow (when testing): all distances to each training

instance must be computed

• Large storage requirements (all training data is

stored)

• Very sensitive to irrelevant attributes and the curse

of dimensionality

Irrelevant attributes

Irrelevant

attribute

Relevant

attribute

irrelevant

attribute

K=1

0 irrelevant

atributtes

1 irrelevant

atribute

With the relevant attribute,

classification is done properly

The irrelevant attribute makes

distances confusing

DISTANCES

• For numerical attributes, use the Euclidean distance:

• 2D: d(xi,xj)
2 = (xi1-xj1)

2 + (xi2-xj2)
2

• d(xi,xj) = √ ((xi1-xj1)
2 + (xi2-xj2)

2)

• dD: d(xi,xj)
2 = (xi1-xj1)

2 + (xi2-xj2)
2 + … + (xid-xjd)2

• For nominal / categorical attributes, use the

Hamming distance:

• If attribute e es nominal (discrete, categorical, …), instead

of (xie-xje)2 , the following is used: δ(xie, xje): 0 if xie=xje and 1
otherwise

• or transform the attribute to dummy variables / one-

hot encoding)

NORMALIZATION

• It is important to normalize attributes, because ranges

can be different (e.g. human body temperature ranges

from 35º to 45º celsius, body height ranges from 0 to 2m,

age ranges from 0 to 100 years, etc.)

• Otherwise, attributes with a large range have more

weight on the distance

• Normalizing to 0-1 range:

• x’1j= (x1j-minj)/(maxj-mini)

MODELS:
DECISION TREES (AND RULES) FOR
CLASSIFICATION AND REGRESSION

MODELS: DECISION TREES

No Yes 91 71 Rainy

Yes No 75 81 Outc

ast

Yes Yes 90 72 Outc

ast

Yes Yes 70 75 Sunn

y

Yes No 80 75 Rainy

Yes No 70 69 Sunn

y

No No 95 72 Sunn

y

Yes Yes 65 64 Outc

ast

Yes No 80 68 Rainy

Yes No 96 70 Rainy

Yes No 86 83 Outc

ast

No Yes 90 80 Sunn

y

No No 85 85 Sunn

y

Tennis Wind Humidity Temperature Sky

ML

Algorithm

????? No 65 60 Sunny

Tennis Wind Humidity Tempe

rature

Sky

Class = Yes

Training Data

Model (Classifier)

Prediction

In
st

a
n

c
e

s,
 e

x
a

m
p

le
s

Attributes, features,

Input variables,
Independent variables

Label, class, output variable,
dependent variable

Test data

DECISION TREE

Decision trees

Sky

Humidity Wind YES

YES NO NO YES

Sunny

Outcast

Rainy

<=77.5 > 77.5 Yes No

Algorithms for building decision trees

• The most basic is ID3: decision trees are constructed

recursively from the root to the leaves, each time

selecting the best node (attribute) to put on the

tree

• C4.5 (or J48), is able to deal with continuous

attributes and uses statistical criteria to prevent

overfitting the tree to the data (too large trees imply

that data is memorized rather than generalized)

Simplified ID3 algorithm

1. Stop growing the tree if:

1. All examples belong to the same class

2. If there are no remaining instances or attributes

2. Otherwise, select the best attribute for that node,

according to some criteria (entropy minimization,

for instance)

3. Build recursively as many subtrees as values in the

selected attribute

Simplified C4.5 algorithm

1. Stop growing the tree if:

1. All examples belong to the same class

2. If there are no remaining instances or

attributes

3. If no improvements are expected by

growing the tree

2. Otherwise, select the best attribute for that

node, according to some criteria (entropy

minimization, for instance)

3. Build recursively as many subtrees as values in

the selected attribute

WHAT IS THE BEST NODE TO PUT IN THE ROOT OF

THE TREE?

Sky?
Sunny

Outcast
Rainy

Humidity?

<=X > X

Wind?

Yes No

Temperature?

<=X > X

Let’s try with attribute SKY

S T H W Ten

Sun

ny

85 85 No No

Sun

ny

80 90 Yes No

Sun

ny

72 95 No No

Sun

ny

69 70 No Yes

Sun

ny

75 70 Yes Yes

S T H W Ten

Outcast 83 86 No Yes

Outcast 64 65 Yes Yes

Outcast 72 90 Yes Yes

Outcast 81 75 No Yes

Sky
Sunny

Outcast
Rainy

S T H W Ten

Rainy 70 96 No Yes

Rainy 68 80 No Yes

Rainy 75 80 No Yes

Rainy 65 70 Yes No

Rainy 71 91 Yes No

“3 No, 2 Yes”

“0 No, 4 Yes”
“2 No, 3 Yes”

Perfect partition
“yes” majority

“no” majority

Sky generates as many partitions as values (3: sunny,

outcast, rainy)

How do we know if SKY is a good attribute?

• Perfect partition:

• 0% No, 100% Yes

• 100% No, 0% Yes

• Worse partition: 50% No, 50% Yes

• Entropy measures partition quality

(the larger, the worse)

)1(

))()()(loglog(
22

pp

pppp

yesno

nonoyesyes
PH

)()(log
2
pp

Ci
Ci

Ci
PH

Proportion

of Yes

OTHER WAYS TO MEASURE PARTITION
QUALITY

Ci

Ci
pp Ci

PGini)1()()()(log
2
pp

Ci
Ci

Ci
PH

Entropy

),max()(pp
noyes

PM

Gini Majority

Average entropy for Sky

• Entropy for the three partitions of Sky:

1. “3 No, 2 Yes”: H=-((3/5)*log2(3/5)+(2/5)*log2 (2/5) = 0.97

2. “0 No, 4 Yes”: H=-((0/4)*log2 (0/4)+1*log2 (1))=0

3. “2 No, 3 Yes”: H=-((2/5)*log2 (2/5)+(3/5)*log2 (3/5))= 0.97

• Average Sky entropy:

• HP=(5/14)*0.97+(4/14)*0+(5/14)*0.97 = 0.69

• Note: there are14 instances in the data set

WHAT TO DO FOR CONTINUOUS

ATTRIBUTES?
C4.5 creates a binary (two-values) attribute by computing a threshold X

Temperature

<=X > X

Nota: only some

thresholds are shown. The

best one is X=84 with

average entropy = 0.83

64 – Yes, 65-No, 68 – Yes, 69 – Yes, 70 – Yes, 71 – No, 72 – YesNo, 75 – YesYes, 80 – No, 81 – Yes, 83 – Yes, 85 - No

4 No, 9 Yes 1 No, 0 Yes

HP = 0.83

X=84

64 – Yes, 65-No, 68 – Yes, 69 – Yes, 70 – Yes, 71 – No, 72 – YesNo, 75 – YesYes, 80 – No, 81 – Yes, 83 – Yes, 85 - No

 1 No, 4 Yes 4 No, 5 Yes
HP = 0.89

X=70.5

64 – Yes, 65-No, 68 – Yes, 69 – Yes, 70 – Yes, 71 – No, 72 – YesNo, 75 – YesYes, 80 – No, 81 – Yes, 83 – Yes, 85 - No

 2 No, 4 Yes 3 No, 5 Yes

HP = 0.93

X=71.5

X?

Possible thresholds

Possible thresholds are transitions from Yes to No, or from No to Yes:

64 – Yes, 65-No, 68 – Yes, 69 – Yes, 70 – Yes, 71 – No, 72 – YesNo, 75 – YesYes, 80 – No, 81 – Yes, 83 – Yes, 85 - No

 X=64.5 X=73.5 X=77.5 X=66.5 X=70.5 X=71.5 X=80.5 X=84

• The actual threshold may depend on the algorithm implementation. Some

implementations use the average: Ej: 64.5 = (64+65)/2.

• Other implementations use the maximum of the left partition. In that case, the

possible thresholds would have been:

• Notice that entropy computed with the training data is the same in both cases,

because in the two cases data is partitioned in the same way.

64 – Yes, 65-No, 68 – Yes, 69 – Yes, 70 – Yes, 71 – No, 72 – YesNo, 75 – YesYes, 80 – No, 81 – Yes, 83 – Yes, 85 - No

 X=64 X=72 X=75 X=65 X=70 X=71 X=80 X=83

Humidity

Humidity

<=X > X

1 No, 6 Yes 4 No, 3 Yes

Note: there are other alternatives for the threshold, but this is the best one (minimum entropy)

65-Yes, 70-NoYesYes, 75–Yes, 80-YesYes, 85-No, 86-Yes, 90-NoYes, 91-No, 95-No, 96-Yes

1 No, 6 Yes 4 No, 3 Yes HP = 0.79
X=82.5

Sky
Sunny

Outcast
Rainy

Humidity

<=80 > 80

Wind

Yes No

Temperatura

<=84 > 84

3 No, 2 Yes

0 No, 4 Yes 2 No, 3 Yes

4 No, 9 Yes 1 No, 0 Yes

HP=0.69

HP = 0.83

HP = 0.79

2 No, 6 Yes 3 No, 3 Yes

HP = 0.89

WHAT IS THE BEST NODE TO PUT IN

THE ROOT OF THE TREE?

1 No, 6 Yes 4 No, 3 Yes

Recursive tree growth

S T H W Ten

Sun

ny

85 85 No No

Sun

ny

80 90 Yes No

Sun

ny

72 95 No No

Sun

ny

69 70 No Yes

Sun

ny

75 70 Yes Yes

S T H W Ten

Outcast 83 86 No Yes

Outcast 64 65 Yes Yes

Outcast 72 90 Yes Yes

Outcast 81 75 No Yes

Sky
Sunny

Outcast
Rainy

S T H W Ten

Rainy 70 96 No No

Rainy 68 80 No Yes

Rainy 75 80 No Yes

Rainy 65 70 Yes No

Rainy 71 91 Yes No

“3 No, 2 Yes” “0 No, 4 Yes” “2 No, 3 Yes”

Now that the attribute for the root node has been determined,

the process continues recursively. Now, the algorithm has to

construct three new subtrees.

When to stop splitting data?

S T H W Ten

Sun

ny

85 85 No No

Sun

ny

80 90 Yes No

Sun

ny

72 95 No No

Sun

ny

69 70 No Yes

Sun

ny

75 70 Yes Yes

S T H W Ten

Outcast 83 86 No Yes

Outcast 64 65 Yes Yes

Outcast 72 90 Yes Yes

Outcast 81 75 No Yes

Sky
Sunny

Outcast
Rainy

S T H W Ten

Rainy 70 96 No No

Rainy 68 80 No Yes

Rainy 75 80 No Yes

Rainy 65 70 Yes No

Rainy 71 91 Yes No

“3 No, 2 Yes”

“0 No, 4 Yes”
“2 No, 3 Yes”

What is the best option, continue splitting, or classify with the majority class (No).

Use a statistical test. The decision might be based in too few instances.

No need to create a new node because

all instances belong to the same class

Why stop tree growth?

Sky

Humidity

Sunny

Outcast
Rainy

<=77.5 > 77.5

T H V Ten

85 85 No No

80 90 Yes No

72 95 No No

T H V Ten

69 70 No Yes

75 70 Yes Yes

No need to create a new node because

all instances belong to the same class

“2 Yes, 0 No” “3 No, 0 Yes”

Recursive tree growth

Sky

Humidity

YES NO

Sunny

Outcast
Rainy

<=75 > 75

Recursive tree growth

Sky

Humidity Wind YES

YES NO NO YES

Sunny

Outcast
Rainy

<=75 > 75 Yes No

Why to stop tree growth?

T H V Ten

69 70 No Yes

75 71 Yes Yes

Sky

Humidity

Sunny

Overcast
Rainy

<= 77.5 > 77.5

Humidity

T H V Ten

72 76 No No

<=73.5 > 73.5

Maybe this decision is

based in too few

instances (only 3)

NO

Let’s suppose that data that got here

was different. We could continue

splitting since data belong to different

classes.

T H V Ten

69 70 No Yes

75 71 Yes Yes

72 76 No No

Why to stop tree growth?

Cielo

Humedad

Sunny

Overcast
Rainy

<= 77.5 > 77.5
Maybe it is better to

close the tree with the

majority class (Yes),

rather than choosing an

attribute to continue

splitting the data.

NO

T H V Ten

69 70 No Yes

75 71 Yes Yes

72 76 No No

SI

The algorithm uses a statistical criterion in order to determine

whether it is worth to continue tree growth, whether the sample is

too small, etc.

Let’s suppose that data that got here

was different.

47

Rules (created from the decision tree)

IF Sky = Sunny AND Humidity <= 75 THEN Tennis = Yes

ELSE IF Sky = Sunny AND Humidity > 75 THEN Tennis = No

ELSE IF Sky = Outcast THEN Tennis = Yes

ELSE IF Sky = Rainy AND Wind = Yes THEN Tennis = Yes

ELSE Tennis = No

Obtain one rule from each path from the root to the leaves

But there are algorithms that build rules directly from data

TREES FOR REGRESSION

• What to do if the class / label is continuous (rather than

discrete?

• Answer: variance reduction (instead of entropy reduction)

• Two types:

• Model trees

• Regression trees

Example of linear regression

TREES FOR REGRESSION: TWO TYPES

A<4

B<30

Y=0.8*A+0.1*B-0.7 No

Yes

Yes
No

Y=0.2*A + 0.9*B-0.3 Y=0.4*A + 0.2*B-0.6

A<4

B<30
7.32

No Yes

Yes No

C>2 A<7

8.56 10.2 9.3 11.5

 Regression tree Model tree

Constants Linear models in the leaves

Yes No Yes No

EXAMPLE

Data Miner? Age Salary

Yes 20 2000

Yes 25 2500

Yes 30 3000

Yes 35 3500

Yes 40 4000

Yes 45 4500

Yes 50 5000

No 20 2000

No 25 2050

No 30 2100

No 35 2150

No 40 2200

No 45 2250

No 50 2300

0

10000

20000

30000

40000

50000

60000

0 20 40 60

Data miner

Not data miner

Age

Salary

Training data

MODEL TREES. EXAMPLE

Data miner?

Salary = 2000+(age-20)*100 Salary = 2000+(age-20)*10

Yes No

REGRESSION TREES. EXAMPLE

Data miner?

Salary = 3500 Salary = 2150

Yes No

In the leaves, we can see the average salary for data miners (3500 euros)

and the average salary for non-data miners (2150 euros)

TREES FOR REGRESSION

• Regression and model trees are built similarly, except that in

the leaves

• For regression trees, the average output value is computed

• For model trees, a linear model is constructed (M5 (Quinlan, 93))

• Trees for regression are built similarly than trees for

classification (decision trees), except that standard deviation

is reduced (instead of entropy)

• The tree is built recursively until a stopping condition is

reached:

• Too few examples (2)

• Standard deviation smaller than 5% of the original sd

WHAT IS THE BEST NODE TO PUT IN

THE ROOT OF THE TREE?

Which attribute is better?

x1 or x2?

We will choose the attribute for which the average standard

deviation (sd) after the partition is small:

 100/200 * sd(xi<0.5) + 100/200 * sd(xi>0.5)

100 instances

100 instances

100 instances

100 instances

WHAT IS THE BEST NODE TO PUT IN THE

ROOT OF THE TREE?

y
(output)

x1 0

1

1

x1<0.5

0.25

No Yes

0.5

y=0.25

y=0.75

0.75

It can be noticed that x1 is

quite predictive

Instances after the partition

are very spread

½*sd(x1<0.5) + ½* sd(x1>0.5)

is small

sd
when
x1>0.5

sd
when
x1<0.5

100 instances

100 instances

WHAT IS THE BEST NODE TO PUT IN

THE ROOT OF THE TREE?

x2
0

1

1

y
(output)

x2<0.5

0.45

No Yes

0.55

0.5

y=0.55

y=0.45

It can be noticed that x2 is

not predictive

Instances after the partition

are very spread

½* sd(x2<0.5) + ½* sd(x2>0.5)

is very large

sd

when
x2>0.5

sd
when
x2<0.5

REFERENCES

• M5P: Model trees

• Wang, Y., & Witten, I. H. (1996). Induction of model

trees for predicting continuous classes.

• http://researchcommons.waikato.ac.nz/bitstream/

handle/10289/1183/uow-cs-wp-1996-

23.pdf?sequence=1

