
Ricardo Aler Mur

• The main goals of this lecture are:

• To describe why it is important to evaluate models, by explaining

the concept of generalization and overfitting, both in

classification and regression.

• Then, several methods of evaluation are explained: train / test

(holdout), repeated train/test, and crossvalidation, the latter one

being the recommended method.

• There are many evaluation measures, both for classification and

regression. Two of them are explained in more detail: success rate

(for classification) and root mean squared error (for regression).

• Finally, the process of hyper-parameter tuning is introduced.

• In the initial point, it was shown how the complexity of the model and

overfitting are related (the more complex the model, the more likely

it is overfitting, although there is always the possibility of underfitting)

• It is explained that all machine learning algorithms have some hyper-

parameter that determine the performance of the model, and

specifically, its complexity.

• Those hyper-parameters need to be adjusted, or tuned. The process

of grid-search, by which all possible combinations of parameters are

tested, is explained.

EVALUATION

EVALUATION

• Once the model has been obtained it is important to estimate
its future performance

• Why? If a student is evaluated (exam) with the same exercises
s/he used for learning, probably s/he will get high grades

• But s/he is not showing that s/he has generalized beyond the
training exercises. S/he might have just memorized them

• Models suffer from the same issue

• Solution: use fresh (new) data for testing the model

• Divide the available data into a training partition and a test
partition (typically 70% vs. 30%)

EXAMPLE OF A CLASSIFICATION
MODEL NOT GENERALIZING WELL

-1.5 -1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Let’s suppose we want to learn a model that is able to separate class “blue”

from class “green”. Below we can see instance space with thousands of

instances. Notice that both classes overlap in the middle

EXAMPLE OF A CLASSIFICATION
MODEL NOT GENERALIZING WELL

-1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

• But if we have few data for training, the following model might be learned

• The model is obviously not generalizing well. It is memorizing the data, or

overfitting the data

This curve has been

learned because there

are no green instances

here.

But this happened by

chance. If we had more

instances, probably

there would be green

instances in that region

EXAMPLE OF A CLASSIFICATION
MODEL NOT GENERALIZING WELL

-1.5 -1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

If we had lots of data, the following (correct) model would be learned

EXAMPLE OF A REGRESSION MODEL
NOT GENERALIZING WELL

• Let’s suppose that the underlying model is a parabola, but

instances have some noise

• For example, y might be “temperature”, but the thermometer used to
measure it is not very accurate

X (input)

Y (output)

Correct

underlying

model

Noisy instances

EXAMPLE OF A REGRESSION MODEL
NOT GENERALIZING WELL

Overfitting Underfitting

TRAIN / TEST EVALUATION METHOD

Attributes Class

ML algorithm

Model

Success rate
computation predictions

Training

Test

Available
data

actual

classes

Main problem: if available data is not very large, it is possible that
the training and/or the test partitions are biased

Example of bias: There is data about whether persons like playing
tennis. In the training partition, there are 51% men and 49%
women and the model learns that it is more likely for men to like
playing tennis. Maybe it is a random bias?

REPEATED TRAIN / TEST

• Repeat train / test many times

• Given that biases happen randomly, biases that appear in some

of the train / test partition will not appear in other train / test

partitions. In general random biases will cancel each other after

averaging.

• Method:

• Repeat many times:

1. Sort available data randomly

2. Take the first 70% of instances for training and 30% for test

3. Learn the model with the training partition and test the model

with the test partition. Obtain success rate on the test partition

• Average all test success rates

REPEATED TRAIN / TEST

• Main problem: the different test partitions might

overlap: they are not independent

• In an extreme (and unlikely) case, if all test partitions

were exactly the same, computing the average of all

of them would be useless

• This extreme case never happens, but there is always

some overlap between test partitions

13

CROSSVALIDATION

• The available data (originally called “training data”) is
divided into k folds (k partitions). With k=3, three
partitions A, B, and C.

• The process has k steps (3 in this case):
• Learn model with A, B, and test it with C (T1 = success rate on C)

• Learn model with A, C, and test it with B (T2 = success rate on B)

• Learn model with B, C and test it with A (T3 = success rate on A)

• Success rate T = (T1+T2+T3)/3

• The final classifier CF is learned with the whole dataset
(A, B, C). It is assumed that T is a good estimation of the
success rate of CF

• k=10 is commonly used

PERFORMANCE MEASURES

• What is meant by “error” (or “success”):

• In classification, success rate: count how many times the

model gives the correct answer and divide by the number

of test data

• In regression: root mean squared quadratic error

K-FOLD CROSSVALIDATION

• Split the available data in k folds (partitions). With k=3 there are
three partitions: A, B, and C.

• Each partition is used as test partition in turn

• The train / test process is repeated k times (3 times in this case):

• Train model with A and B. Test model with C (T1 = success rate with C)

• Train model with A and C. Test model with B (T2 = success rate with B)

• Train model with B and C. Test model with A (T3 = success rate with A)

•

• Expected success rate T = (T1+T2+T3)/3

• Finally, the final classifier CF is learned with the whole available
data: A, B, and C. It is assumed that T will also be the success rate
of CF.

• Notice that the test partitions never overlap (i.e. they are
independent)

• Typicall k=10

Basic criteria for evaluating classification
models

• Let’s suppose that there are two classes. A successful model has to

obtain a success rate larger than 50%. Otherwise, tossing a coin

would give better results

• For M classes, the baseline result is 1/M * 100

• In classification problems, a successful model has to obtain a

success rate larger that the percentage of the majority class.

• The reason is that some classification problems are imbalanced, i.e. there are

many more instances for the “Yes” class than for the “No” class.

• Let’s suppose that 90% of instances belong to “No” and only 10% of instances

belong to “Yes”. A trivial classifier that always says “No” would already obtain
90% success rate!! (by doing nothing)

• Our model has to do better than that

HYPERPARAMETER TUNING

HYPER-PARAMETERS

• Each machine learning algorithm has one or several

parameters (called hyper-parameters)

• For instance, KNN has K (the number of neighbors)

• For instance, decision trees have:

• max_depth: the maximum depth of the tree

• min_samples_split: the minimum number of instances to split

a node (the default value is 2: if a node contains fewer than
2 instances, the node is not split)

• Finding the correct value of a hyper-parameter

may result in improved performance of the classifier

HYPER-PARAMETERS

• Finding the correct value of a hyper-parameter

may result in improved performance of the classifier

• Hyperparameters control, directly or indirectly, the

complexity of a classifier

• In general, the more complex a model is, the more

likely it will overfit the data (but if it is not complex

enough, it will underfit the data)

• Example of a complex classifier (the curve is

allowed to turn around many times):

HYPER-PARAMETER TUNING

• In decision trees, if max_depth is very large or

min_samples_split is very small, the resulting tree will

be large, and therefore, complex

• We can try to give appropriate values to the hyper-

parameters by hand (trying and testing)

• But there is an automatic way of tuning the

hyperparameters which is called grid-search

GRID SEARCH

MAX_DEPTH 2 4 6 8

MIN_SAMPLES

2 (2,2) (2,4) (2,6) (2,8)

4 (4,2) (4,4) (4,6) (4,8)

6 (6,2) (6,4) (6,6) (6,8)

Grid search means: try all possible combinations of values for the two

(or more) hyper-parameters. For each one, carry out a crossvalidation,

and obtain the success rate. Select the combination of hyper-

parameters with best success-rate.

MAX_DEPTH 2 4 6 8

MIN_SAMPLES

2 70% 75% 76% 68%

4 72% 73% 81% 70%

6 68% 70% 71% 67%

