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• The limitations of the MapReduce programming model are explained, 

and Spark is shown to solve them. 

 

• Basic concepts are introduced, specially the RDD (Resilient Distributed 

Dataset) and the concept of transformation and action. 

 

• Transformations transform a RDD into another RDD, but its execution is 

lazy. That means that noting happens when the transformation is 

applied. 

 

• Only when an action is executed, all the transformations are actually 

applied and run. 

 

• Some examples of transformations and actions are explained. 

 

 



• A more complex RDD is introduced: pair RDDs, where every instance 

constains a key and a value. 

 

• Some specific transformations for pair RDDs are explained: 

reduceByKey and flatMap. 

 

• It is shown that the MapReduce programming model can be 

programmed in Spark with Map and ReduceByKey. 

 

• Two of the main Spark libraries for Machine Learning are introduced: 

Mlib and ML, the latter being the most recent one. Mlib relies on RDDs 

and the LabelledPoint data type, while ML relies on a more complex 

data strcture called DataFrame. 

 

• The non-supervised K-means algorithm is explained now within the 

Spark programming model. 

 

 

 

 



LARGE SCALE MACHINE 
LEARNING: SPARK 



MAPREDUCE / HADOOP LIMITATIONS 

• For every map / reduce iteration, MapReduce must save 
results to disk (and more specifically, to the distributed file 

system, which involves replication for failure recovery) 

• Nowadays, the price of RAM has decreased and it is faster to 

save results to RAM memory (partially, at least) 

• Spark uses some of the ideas of MapReduce, but it is oriented 

to a more heavy use of RAM 

MapReduce Spark 



SPARK ECOSYSTEM 

• Spark native language is Scala, but it can be 

programmed also in Python via the Pyspark 

package 

• Scala is faster, but Pyspark allows to use the Python 

language and Python libraries 

PYSPARK 



BASIC CONCEPTS 

• Driver: It runs the main user program. It accesses the Spark 

environment through a SparkContext object. 

• Executor: it executes tasks spawned from the driver 

• RDD: Resilient Distributed Dataset:  

• It contains distributed data, spread across partitions 

• Transformations on them are carried out in parallel (data 

parallelism) (but RDDs themselves are inmutable). 

• If something goes wrong with one of the workers, Spark 

recomputes (part of) the RDD automatically 



CREATING RDDS 

• Distributing a collection of objects, e.g. a python list 

• lines_rdd = sc.parallelize([1,2,3]) 

• Loading an external dataset or file. 

• lines_rdd = sc.textFile(‘README.md’, 4) 

• Transforming an existing RDD 

• rounded_rdd= numbers_rdd.map(round) 

For more information, check the Spark Programming Guide at: 

http://spark.apache.org/docs/latest/programming-guide.html 



OPERATIONS ON RDDS 

• Two types of operations: 

• Transformations: creates a new RDD from a previous one 

• Actions: computes a result based on an existing RDD 

 

• Important: transformations are just recipes, not computations. 

They are not actually computed until they are needed by an 

action (called lazy evaluation). Thus, results are not loaded into 

memory until they are actually needed.  

• For example, map is a transformation. Collect is an action. 

Therefore: 

• rounded_rdd = numbers_rdd.map(round) does nothing 

• rounded_numbers = rounded_rdd.collect() actually 
computes the result and puts it into the rounded_numbers 

variable 



LAMBDA FUNCTIONS 

• A lambda function is a quick way of defining a 

function in python: 

• With def: 

 def squared(x): 

return(x**2) 

 

numbers_rdd.map(squared) 

 

• With lambda function: 
numbers_rdd.map(lambda x: x**2) 



MAIN TRANSFORMATIONS:  
MAP & FILTER 

•  map: Reads one element at a time. takes one 

value, creates a new value: 

  

squared_rdd = numbers_rdd.map(lambda x: x**2) 

 

•  filter: Reads one element at a time. Evaluates each 

element. Returns the elements that pass the filter() 

 

  positive_rdd = numbers_rdd.filter(lambda x: x>0) 

 

• flatMap 



TRANSFORMATION:  
FLATMAP 

•  flatMap: it applies a function that takes one element from the rdd, 

but produces a list. The final rdd is flattened 



ACTIONS 

• Actions force Spark to compute transformations on RDD 

• Results can be returned to the driver or saved to disk 

• Every call to an action recomputes the transformation 

(but recomputation can be avoided by persisting results 

to memory or disk) 



MAIN ACTIONS: COMPUTING THE RDD 
(OR PART OF IT) 

•  collect(): retrieves the entire RDD 

• Important: results must fit in the memory of the machine where 

the driver is running 

•  take(n): like collect, but returns only n elements from the RDD 

• Important: this is not a sample from all the partitions. All elements 

might come from one or two partitions 

•  takeSample(): like take, but takes a random sample from all the 

partitions 

•  top(n), takeOrdered: like take, but the RDD is first ordered and the 

first n elements are returned 

 

• Note: “take(n)”: Spark realizes that only n elements of the RDD are 

needed, and it will compute only those n elements (if possible) 



MAIN ACTIONS: REDUCE 

•  reduce(): Takes a function that takes two elements 

from the RDD and returns a single value 

 

 

 

 

 

 

•  count(): counts the number of elements of the RDD 



PIPELINES OF TRANSFORMATIONS AND 
ACTIONS 

• Example: filter the even numbers, square them, and 

add them together: filter, map, reduce 

• In python, it is possible to write a command over 

several lines if they are enclosed within parentheses 



PERSISTENCE 

• The even_rdd RDD is recomputed everytime (one 

for computing result and another for computing 

result2) 



PERSISTENCE 

• Storing (persisting) the RDD in memory can be enforced 

via persist() 



PERSISTENCE 

• Note: sc.textFile() or sc.parallelize() do not actually 

load the memory or carry out the partitioning of 

data. If we want to do the loading or the partition 

and persist the result, we must use persist() 

 

 lines = sc.textFile(“The_Hobbit.txt”) 

 lines.persist() 

 

 numbers = sc.parallelize([1,2,3,4]) 

 numbers.persist() 



RDDS OF KEY/VALUE PAIRS 

• Pair RDDs: They are standard RDDs, but each 

element is a tuple of a key and a value: (key, value) 



OPERATIONS FOR PAIR RDDS 

• reduceByKey: it is like reduce, but a different 

reduce is carried out for every key. Note: 

reduceByKey is a transformation (not an action, like 

reduce) 

 

 

 

 

• Other: sortByKey, groupByKey, countByKey 

•  collectAsMap: collects the pair RDD as a python 

dictionary 



OPERATIONS FOR PAIR RDDS:  
MAP VS. MAPVALUES 

•  map and flatMap can be used, but if we want to 

maintain the keys, it is better to use mapValues, 

flatMapValues 



MAPREDUCE 
AND SPARK 

• MapReduce is 

equivalent to the 

map / 

reduceByKey 

Spark 

transformations  
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MACHINE LEARNING IN SPARK 

• Packages: 

• Mllib (Machine Learning library): common learning 

algorithms and utilities, including classification, regression, 

clustering, dimensionality reduction, … 

• Important: it is based on standard RDDs, using mainly the 

Labeled point data type  

• ML: introduced in 2015. Same as Mllib, but it is based on the 

recently added DataFrames (instead of RDDs). It allows to 
easily do crossvalidation, grid-search, and ML pipelines 

(sequences of ML operations). Very recently, another data 

type has been introduced (DataSets), which are basically 

typed DataFrames. 

 

For more information, check: 

http://spark.apache.org/docs/latest/mllib-guide.html 



SPARK.MLLIB 

• Machine learning in Spark is rapidly changing. Here, 

we will study only LabeledPoint (ML library), but 

DataFrames and DataSets will become standard in 

the near future 

• The LabeledPoint datatype is a way to represent 

instances. It is made of two parts: features (input 

attributes) and label (class, output attribute) 



LABELEDPOINT EXAMPLE 

• Let’s transform the scikit Iris dataset into LabeledPoints 



LABELEDPOINT EXAMPLE 

 



Algorithm k-means (k)  

1. Initialize the location of the k prototypes kj 

  (usually, randomly)  

2. Assign each instance xi to its closest prototype  

 (usually, closeness = Euclidean distance).  

3. Update the location of prototypes kj as the 

average of the instances xi assigned to each 

cluster.  

4. Go to 2, until  clusters do not change 
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