
Ricardo Aler Mur

• The limitations of the MapReduce programming model are explained,

and Spark is shown to solve them.

• Basic concepts are introduced, specially the RDD (Resilient Distributed

Dataset) and the concept of transformation and action.

• Transformations transform a RDD into another RDD, but its execution is

lazy. That means that noting happens when the transformation is

applied.

• Only when an action is executed, all the transformations are actually

applied and run.

• Some examples of transformations and actions are explained.

• A more complex RDD is introduced: pair RDDs, where every instance

constains a key and a value.

• Some specific transformations for pair RDDs are explained:

reduceByKey and flatMap.

• It is shown that the MapReduce programming model can be

programmed in Spark with Map and ReduceByKey.

• Two of the main Spark libraries for Machine Learning are introduced:

Mlib and ML, the latter being the most recent one. Mlib relies on RDDs

and the LabelledPoint data type, while ML relies on a more complex

data strcture called DataFrame.

• The non-supervised K-means algorithm is explained now within the

Spark programming model.

LARGE SCALE MACHINE
LEARNING: SPARK

MAPREDUCE / HADOOP LIMITATIONS

• For every map / reduce iteration, MapReduce must save
results to disk (and more specifically, to the distributed file

system, which involves replication for failure recovery)

• Nowadays, the price of RAM has decreased and it is faster to

save results to RAM memory (partially, at least)

• Spark uses some of the ideas of MapReduce, but it is oriented

to a more heavy use of RAM

MapReduce Spark

SPARK ECOSYSTEM

• Spark native language is Scala, but it can be

programmed also in Python via the Pyspark

package

• Scala is faster, but Pyspark allows to use the Python

language and Python libraries

PYSPARK

BASIC CONCEPTS

• Driver: It runs the main user program. It accesses the Spark

environment through a SparkContext object.

• Executor: it executes tasks spawned from the driver

• RDD: Resilient Distributed Dataset:

• It contains distributed data, spread across partitions

• Transformations on them are carried out in parallel (data

parallelism) (but RDDs themselves are inmutable).

• If something goes wrong with one of the workers, Spark

recomputes (part of) the RDD automatically

CREATING RDDS

• Distributing a collection of objects, e.g. a python list

• lines_rdd = sc.parallelize([1,2,3])

• Loading an external dataset or file.

• lines_rdd = sc.textFile(‘README.md’, 4)

• Transforming an existing RDD

• rounded_rdd= numbers_rdd.map(round)

For more information, check the Spark Programming Guide at:

http://spark.apache.org/docs/latest/programming-guide.html

OPERATIONS ON RDDS

• Two types of operations:

• Transformations: creates a new RDD from a previous one

• Actions: computes a result based on an existing RDD

• Important: transformations are just recipes, not computations.

They are not actually computed until they are needed by an

action (called lazy evaluation). Thus, results are not loaded into

memory until they are actually needed.

• For example, map is a transformation. Collect is an action.

Therefore:

• rounded_rdd = numbers_rdd.map(round) does nothing

• rounded_numbers = rounded_rdd.collect() actually
computes the result and puts it into the rounded_numbers

variable

LAMBDA FUNCTIONS

• A lambda function is a quick way of defining a

function in python:

• With def:

 def squared(x):

return(x**2)

numbers_rdd.map(squared)

• With lambda function:
numbers_rdd.map(lambda x: x**2)

MAIN TRANSFORMATIONS:
MAP & FILTER

• map: Reads one element at a time. takes one

value, creates a new value:

squared_rdd = numbers_rdd.map(lambda x: x**2)

• filter: Reads one element at a time. Evaluates each

element. Returns the elements that pass the filter()

 positive_rdd = numbers_rdd.filter(lambda x: x>0)

• flatMap

TRANSFORMATION:
FLATMAP

• flatMap: it applies a function that takes one element from the rdd,

but produces a list. The final rdd is flattened

ACTIONS

• Actions force Spark to compute transformations on RDD

• Results can be returned to the driver or saved to disk

• Every call to an action recomputes the transformation

(but recomputation can be avoided by persisting results

to memory or disk)

MAIN ACTIONS: COMPUTING THE RDD
(OR PART OF IT)

• collect(): retrieves the entire RDD

• Important: results must fit in the memory of the machine where

the driver is running

• take(n): like collect, but returns only n elements from the RDD

• Important: this is not a sample from all the partitions. All elements

might come from one or two partitions

• takeSample(): like take, but takes a random sample from all the

partitions

• top(n), takeOrdered: like take, but the RDD is first ordered and the

first n elements are returned

• Note: “take(n)”: Spark realizes that only n elements of the RDD are

needed, and it will compute only those n elements (if possible)

MAIN ACTIONS: REDUCE

• reduce(): Takes a function that takes two elements

from the RDD and returns a single value

• count(): counts the number of elements of the RDD

PIPELINES OF TRANSFORMATIONS AND
ACTIONS

• Example: filter the even numbers, square them, and

add them together: filter, map, reduce

• In python, it is possible to write a command over

several lines if they are enclosed within parentheses

PERSISTENCE

• The even_rdd RDD is recomputed everytime (one

for computing result and another for computing

result2)

PERSISTENCE

• Storing (persisting) the RDD in memory can be enforced

via persist()

PERSISTENCE

• Note: sc.textFile() or sc.parallelize() do not actually

load the memory or carry out the partitioning of

data. If we want to do the loading or the partition

and persist the result, we must use persist()

 lines = sc.textFile(“The_Hobbit.txt”)

 lines.persist()

 numbers = sc.parallelize([1,2,3,4])

 numbers.persist()

RDDS OF KEY/VALUE PAIRS

• Pair RDDs: They are standard RDDs, but each

element is a tuple of a key and a value: (key, value)

OPERATIONS FOR PAIR RDDS

• reduceByKey: it is like reduce, but a different

reduce is carried out for every key. Note:

reduceByKey is a transformation (not an action, like

reduce)

• Other: sortByKey, groupByKey, countByKey

• collectAsMap: collects the pair RDD as a python

dictionary

OPERATIONS FOR PAIR RDDS:
MAP VS. MAPVALUES

• map and flatMap can be used, but if we want to

maintain the keys, it is better to use mapValues,

flatMapValues

MAPREDUCE
AND SPARK

• MapReduce is

equivalent to the

map /

reduceByKey

Spark

transformations

LOCAL AREA NETWORK

 M
A

P

MAP => SORT & SHUFFLE => REDUCE

First data partition

Second data partition M
A

P

R
E
D

U
C

E

 R
E
D

U
C

E

MACHINE LEARNING IN SPARK

• Packages:

• Mllib (Machine Learning library): common learning

algorithms and utilities, including classification, regression,

clustering, dimensionality reduction, …

• Important: it is based on standard RDDs, using mainly the

Labeled point data type

• ML: introduced in 2015. Same as Mllib, but it is based on the

recently added DataFrames (instead of RDDs). It allows to
easily do crossvalidation, grid-search, and ML pipelines

(sequences of ML operations). Very recently, another data

type has been introduced (DataSets), which are basically

typed DataFrames.

For more information, check:

http://spark.apache.org/docs/latest/mllib-guide.html

SPARK.MLLIB

• Machine learning in Spark is rapidly changing. Here,

we will study only LabeledPoint (ML library), but

DataFrames and DataSets will become standard in

the near future

• The LabeledPoint datatype is a way to represent

instances. It is made of two parts: features (input

attributes) and label (class, output attribute)

LABELEDPOINT EXAMPLE

• Let’s transform the scikit Iris dataset into LabeledPoints

LABELEDPOINT EXAMPLE

Algorithm k-means (k)

1. Initialize the location of the k prototypes kj

 (usually, randomly)

2. Assign each instance xi to its closest prototype

 (usually, closeness = Euclidean distance).

3. Update the location of prototypes kj as the

average of the instances xi assigned to each

cluster.

4. Go to 2, until clusters do not change

0

1

2

3

4

5

0 1 2 3 4 5

RANDOM INITIALIZATION OF
PROTOTYPES

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

ASSIGNING INSTANCES TO CLOSEST
PROTOTYPE

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

UPDATE PROTOTYPES
(AVERAGE)

k1

k2

k3

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

ASSIGNING INSTANCES TO CLOSEST
PROTOTYPE

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

expression in condition 1

e
x
p

re
s
s
io

n
 i
n

 c
o

n
d

it
io

n
 2

UPDATE PROTOTYPES
(AVERAGE)

k1

k2
k3

