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• This lecture shows how models can be improved by making 

ensembles of basic models. 

 

• There are basically two types of ensembles: bagging and 

boosting (also Stacking). 

 

• Bagging creates ensembles of models by resampling with 

replacement the original training dataset. This is done many 

times and a model is trained with each resample. 

 

• Boosting creates models sequentially. Each model in the 

sequence focuses on the mistakes of the previous model 
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• There are some variants of Bagging and Boosting when trees are 

used as base models. 

 

• Random forests is a variant of Bagging, where in addition to 

using resampling with replacement, different trees in the 

ensemble are created with different attributes, and each tree uses 

a much smaller subset of attributes (compared to the total set). 

 

• Gradient Boosted Trees is a variant of Boosting, where trees are 

used as base models. It is shown how each new model is trained 

by learning the pseudo-residuals (the difference between the 

ensemble so far and the actual output). It is also shown that 

Boosting is prone to overfitting, and care must be taken to avoid 

it by controlling some of the hyper-parameters. 



ENSEMBLES OF MODELS 

 BAGGING & BOOSTING 
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Ensembles of models 
Ensemble = collection of models (collection of base models) 

Main motivation: all models make mistakes, but mistakes of some of 
the base models can be compensated by successes of the other base 
models, if the mistakes of the base models are not too correlated (i.e. 
it is unlikely that all the base models will all fail at the same time)  

They are usually more accurate than single models, even when the base 
models are “weak learners” (not very accurate)  

Main types: 
— Bagging: base models are trained in parallel with the same ML algorithm 

(e.g. several neural networks). Prediction is decided by majority voting 
(classification) or averaging (regression). 

• Random Forests: subtype with base model = decision tree 

— Boosting: base models are trained sequentially parallel with the same ML 
algorithm . Each model focuses in them mistakes of the previous model. 

• Boosted trees: subtype with base model = decision tree 

— Stacking: base models are trained in parallel, but each base model is 
trained with a different ML algorithm. A meta-model is used to carry out 
the final prediction (instead of majority voting or averaging) 



BAGGING 
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Bagging (Bootstrap aggregating) 

In order to generate an ensemble, Bagging takes advantage 
of:  
— In general, a ML learning algorithm generates a (slightly) different 

model if the training data is (slightly) different 

— For the so-called unstable ML algorithms, small differences in the 
training set cause important differences in the model 
• Unstable: neural networks, decision trees, decision stumps (decision trees with a 

single node), … 

• Stable: Nearest neighbours (KNN), Support Vector Machines (SVM), … 

Bagging generates lots of training sets and train a different 
model with each one. Prediction is decided by majority 
voting (classification) or averaging (regression).  

The collection of training sets is generated from the 
original available data by means of random sampling with 
replacement 
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Bagging (Bootstrap aggregating) 

• D1 contains N instances, generated from D by sampling with 

replacement. 

• Some of the instances in D will end up in D1 several times, while others 

will not be in D1.  

• It can be shown that 33-36% of the original instances will not be present 

in D1 

N instances 

N instances N instances N instances N instances 

(Majority voting 

or averaging) 
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Randomization 

Some of the ML algorithms are stochastic: the same 
algorithm can generate a (slightly) different model 
starting from the same training data (for instance, 
neural networks) 

But even if that is not the case, ML algorithms can 
be modified to make them stochastic 

Therefore, Randomization can be used to generate 
an ensemble of models (instead of sampling with 
replacement) 

We will see that Random Forests do both 
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Bagging and error 

Number of models 

Typically, the more models, the better (lower) the error 
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Why does it work? 
Let’s suppose that there are 25 classifiers for a two-class classification 
problem 

Let’s suppose that all the classifiers have the same error: ε=0.35 (i.e. 
they fail 35% of the test instances. Success rate = 65%) 

If mistakes are independent - or not correlated -(i.e. if it is not the 
case that many classifiers fail at the same time), then the error of the 
ensemble is 6% (predictions are obtained by majority voting): 

 

 

 

 

This is the best case, because it is not easy to obtain classifiers whose 
mistakes are completely uncorrelated (independent), even through 
random sampling or randomization. Uncorrelation can be achieved 
only to some extent 

 εi * (1-ε)25-i represents the case where i classifiers 

fail and 25-i succeed (two-class problem) 



Why does it work? 

A geometric view in 

instance space: the 

average of boundaries is 

more accurate than a 

single boundary 
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Original data 

Decision tree Ensemble of 100 decision trees 



Random Forests (RF) 

RF = Bagging with decision trees. It uses: 

— Random sampling with replacement 

— Randomization: when choosing an attribute for a node, the best is not 

selected. Rather, the best is selected from a random subset of m 

attributes. For instance, if there are M=16 attributes and m=4, then 4 

attributes are randomly chosen, and then the best of the four is 

selected.  

• Typically m=sqrt(M) for classification and m = M/3 for regression.  

• If m == M, then RF = Bagging 



Random Forests 
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Now, different trees will use 

different attributes 



Results of Random Forests 

It is quite common that RF outperform single 

decision trees 
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Random Forests. Out of bag estimation (OOB 

We already know that in order to estimate the 

model success rate, it is necessary to use a different 

test set than the one used for training 

This is typically done by means of train/test (also 

called hold-out) and also by means of 

crossvalidation 

But RF are able to provide a success rate estimation 

without setting aside a test set 

It takes advantage that some instances are not 

present in some of the training sets Di. Given that 

they have not been used for training, they can be 

used for testing the associated tree Ti 

The error of instance x will be computed by using 

the trees where x was not used for training 
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https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm 



Random Forests. Ranking attributes 

Compute out-of-bag error ê 

Let’s recall that an attribute pk is just a column 

of values in the training data table 

Values of column pk are shuffled (sorted 

randomly) and a new out-of-bag error is 

computed: êpk  

Attributes are sorted according to differences 

êpk- ê. Those with larger differences are more 

important for prediction 
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Random Forests. Summary 

Only two new (hyper-)parameters: number of trees in the ensemble 

(k) and size of the attribute subset (m) 

Usually it outperforms single decision trees 

Faster than standard Bagging (because only m<<M attributes are 

considered for each node) 

It provides an estimation success rate called “out-of-bag”: in 

principle, it is not necessary to do train/test or crossvalidation. 

It ranks attributes (the most relevant first): similarly to attribute 

selection 

It is able to return probabilistic predictions: if 90 trees say “+” and 10 

say “-”, probability of “+” is 0.9 



BOOSTING 
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Adaboost (boosting) 

Like Bagging, Boosting trains different models with 

different training sets 

But Boosting constructs models sequentially 

We know that the training data is a list of instances 

(tuples): 

{(x1,y1), …, (xa,ya), …, (xN,yN)} 

In boosting, every instance a has a weight wa. Initially all 

weights are the same for all instances wa=1/N 

At every iteration, weights change, in order to give more 

importance to more difficult instances (and contrariwise 

for easy instances) 
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Adaboost (boosting) 

1. Initially, all training instances use the same weight (wa=1/N) 

2. A first classifier h0 is trained. Its training error is e0 

3. Repeat while 0<ei<0.5 

1. Create a new training set by giving larger weights to difficult instances: 

1. If hi-1 fails with (xa,ya), increase wa =wa* (1-ei-1)/ei-1 

2. If hi-1 succeeds with (xa,ya), decrease wa=wa* ei-1/(1-ei-1) 

 

2. Train a new classifier hi with the new training set. Its error is ei  ((computed on 
the weighted training set) 

 

The final classifier f is a linear combination of all hi.. The alpha coefficients depend on the 
accuracy of hi 

 

 
 

 

 

 

 

Note: if error εi small then αi large, if error εi  large then αi is close to 0 

 

Note: hi must return either +1 or -1 (positive / negative class in two-class problems), or an 
intermediate value. 
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Computing alpha coefficients 



Creating the new training set 

Some ML algorithms are able to use training 

sets with weights, so weights can be used 

directly (for instance, decision trees) 

If that is not the case, the new training set 

can be created by: 

— by multiplying instances according to their weights  

— by randomly sampling the training set. The 

probability that an instance is selected is 

proportional to its weight: 

           wa = wa / (w1+w2+…+wN)  
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1.9459*(+1) + 2.9323*(-1)+ 3.8744*(+1) = 2.888 > 0 

1.9459*(-1) + 2.9323*(-1)+ 3.8744*(+1) = -1.0038 < 0 

1.9459*(-1) + 2.9323*(+1)+ 3.8744*(+1) = 4.8608 > 0 

2.888  

= + 

-1.0038  

= -  
4.8608  

= + 

1.9459*B1(x) + 2.9323*B2(x)+ 3.8744*B3(x) = f(x) 

Boosting

Round 1 + + + -- - - - - -

Boosting

Round 2 - - - -- - - - + +

Boosting

Round 3 + + + ++ + + + + +

Overall + + + -- - - - + +

0.0094 0.0094 0.4623

0.3037 0.0009 0.0422

0.0276 0.1819 0.0038

B1

B2

B3

 = 1.9459

 = 2.9323

 = 3.8744



Example of boosting in 2D instance space 
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Boosting. Summary 

It is one of the best ML algorithms, but it is sensitive to 

noise (class overlap). The reason is that Boosting models 

focuses on instances difficult to classify by the previous 

model. But noisy instances are always difficult to classify. 

Hence, Boosting will try to classify instances that cannot 

be classified, by memorizing them (and therefore, will 

incur in overfitting). 

It has other advantages similar to Bagging (probabilistic 

predictions, attribute ranking, out-of-bag estimations, …) 



GRADIENT BOOSTING 

Adaptation of Boosting for regression 

Other names: Gradient Boosting, Gradient 

Boosting Machines, … 

In every iteration, it trains a model to predict the 

difference between the actual output and the 

output of the ensemble trained so far (pseudo-

residuals) 

30 



GRADIENT BOOSTING 

Example, for minimizing mean squared error 

1. Initialize h0(x) = average of outputs 

2. FOR t = 1 TO T 

— Compute a new training set, whose outputs are the 

“pseudo-residuals”, where for each (xi, yi) we get an 

instance (xi, yi-ft-1(x)) 
• Where ft-1(x) = h0(x)+ α1h1(x)+ … + αt-1 ht-1(x)  ; the ensemble so far 

— Train a new model ht(x) that fits the pseudo-residuals 

— Compute αt in order to minimize the error of the 

ensemble: 

ft-1(x)+αtht(x) 

— Update the ensemble: ft(x) = ft-1(x)+αtht(x) 
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GRADIENT BOOSTED TREES 
It is Gradient Boosting with regression trees, but instead of 

finding the optimal αt for ft-1(x)+αtht(x) … 
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Salary<4? 

Age<30? 
7.32 

No Sí 

Sí No 

Children>2? Salary<7? 

8.56 10.2 9.3 11.5 

Salary<4? 

Age<30? 

7.32*αt 

No Sí 

Sí No 

Children>2? Salary<7? 

8.56*αt 10.2*αt 9.3*αt 11.5*αt 



GRADIENT BOOSTED TREES 

… a different alpha is optimized for every 

leave: α0 α1 α2 α3 α4 
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Salario<4

? 

Edad<30

? 

7.32 

No Sí 

Sí No 

Hijos>2? Salario<7

? 

8.56 10.2 9.3 11.5 

Salario<4? 

Edad<30? 

7.32*α0t 

No Sí 

Sí No 

Hijos>2? Salario<7? 

8.56*α1t 10.2*α2t 9.3*α3t 11.5*α4t 



GBT and overfitting 

All trees in the ensemble contain the same number 

of leaves 

In order to avoid overfitting: 

— Control the number of trees T in the ensemble (small T 

=> small overfitting) 

— Shrinkage: ft(x) = ft-1(x)+v*αtht(x) 

• Use a learning rate 0<v<1 

• This decreases the weight of the model ht, and therefore it is 

more difficult for the model to overfit the data 

• But small v makes training slower 

— Minimum number of instances in the leaves 
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Stochastic Gradient Boosting 

In every iteration, a random sample without 

replacement is used, instead of the whole 

dataset. 

Example: with a subsample of 0.8, only 80% 

of the original dataset is used (and instances 

are not repeated) 

It avoids overfitting, because training data is 

different for every model in the sample 

It provides out-of-bag estimation 

35 


