
Ricardo Aler Mur

• This lecture shows how models can be improved by making

ensembles of basic models.

• There are basically two types of ensembles: bagging and

boosting (also Stacking).

• Bagging creates ensembles of models by resampling with

replacement the original training dataset. This is done many

times and a model is trained with each resample.

• Boosting creates models sequentially. Each model in the

sequence focuses on the mistakes of the previous model

2

• There are some variants of Bagging and Boosting when trees are

used as base models.

• Random forests is a variant of Bagging, where in addition to

using resampling with replacement, different trees in the

ensemble are created with different attributes, and each tree uses

a much smaller subset of attributes (compared to the total set).

• Gradient Boosted Trees is a variant of Boosting, where trees are

used as base models. It is shown how each new model is trained

by learning the pseudo-residuals (the difference between the

ensemble so far and the actual output). It is also shown that

Boosting is prone to overfitting, and care must be taken to avoid

it by controlling some of the hyper-parameters.

ENSEMBLES OF MODELS

 BAGGING & BOOSTING

3

4

Ensembles of models
Ensemble = collection of models (collection of base models)

Main motivation: all models make mistakes, but mistakes of some of
the base models can be compensated by successes of the other base
models, if the mistakes of the base models are not too correlated (i.e.
it is unlikely that all the base models will all fail at the same time)

They are usually more accurate than single models, even when the base
models are “weak learners” (not very accurate)

Main types:
— Bagging: base models are trained in parallel with the same ML algorithm

(e.g. several neural networks). Prediction is decided by majority voting
(classification) or averaging (regression).

• Random Forests: subtype with base model = decision tree

— Boosting: base models are trained sequentially parallel with the same ML
algorithm . Each model focuses in them mistakes of the previous model.

• Boosted trees: subtype with base model = decision tree

— Stacking: base models are trained in parallel, but each base model is
trained with a different ML algorithm. A meta-model is used to carry out
the final prediction (instead of majority voting or averaging)

BAGGING

5

6

Bagging (Bootstrap aggregating)

In order to generate an ensemble, Bagging takes advantage
of:
— In general, a ML learning algorithm generates a (slightly) different

model if the training data is (slightly) different

— For the so-called unstable ML algorithms, small differences in the
training set cause important differences in the model
• Unstable: neural networks, decision trees, decision stumps (decision trees with a

single node), …

• Stable: Nearest neighbours (KNN), Support Vector Machines (SVM), …

Bagging generates lots of training sets and train a different
model with each one. Prediction is decided by majority
voting (classification) or averaging (regression).

The collection of training sets is generated from the
original available data by means of random sampling with
replacement

7

Bagging (Bootstrap aggregating)

• D1 contains N instances, generated from D by sampling with

replacement.

• Some of the instances in D will end up in D1 several times, while others

will not be in D1.

• It can be shown that 33-36% of the original instances will not be present

in D1

N instances

N instances N instances N instances N instances

(Majority voting

or averaging)

8

Randomization

Some of the ML algorithms are stochastic: the same
algorithm can generate a (slightly) different model
starting from the same training data (for instance,
neural networks)

But even if that is not the case, ML algorithms can
be modified to make them stochastic

Therefore, Randomization can be used to generate
an ensemble of models (instead of sampling with
replacement)

We will see that Random Forests do both

9

Bagging and error

Number of models

Typically, the more models, the better (lower) the error

10

Why does it work?
Let’s suppose that there are 25 classifiers for a two-class classification
problem

Let’s suppose that all the classifiers have the same error: ε=0.35 (i.e.
they fail 35% of the test instances. Success rate = 65%)

If mistakes are independent - or not correlated -(i.e. if it is not the
case that many classifiers fail at the same time), then the error of the
ensemble is 6% (predictions are obtained by majority voting):

This is the best case, because it is not easy to obtain classifiers whose
mistakes are completely uncorrelated (independent), even through
random sampling or randomization. Uncorrelation can be achieved
only to some extent

 εi * (1-ε)25-i represents the case where i classifiers

fail and 25-i succeed (two-class problem)

Why does it work?

A geometric view in

instance space: the

average of boundaries is

more accurate than a

single boundary

11

Original data

Decision tree Ensemble of 100 decision trees

Random Forests (RF)

RF = Bagging with decision trees. It uses:

— Random sampling with replacement

— Randomization: when choosing an attribute for a node, the best is not

selected. Rather, the best is selected from a random subset of m

attributes. For instance, if there are M=16 attributes and m=4, then 4

attributes are randomly chosen, and then the best of the four is

selected.

• Typically m=sqrt(M) for classification and m = M/3 for regression.

• If m == M, then RF = Bagging

Random Forests

13

Now, different trees will use

different attributes

Results of Random Forests

It is quite common that RF outperform single

decision trees

14

Random Forests. Out of bag estimation (OOB

We already know that in order to estimate the

model success rate, it is necessary to use a different

test set than the one used for training

This is typically done by means of train/test (also

called hold-out) and also by means of

crossvalidation

But RF are able to provide a success rate estimation

without setting aside a test set

It takes advantage that some instances are not

present in some of the training sets Di. Given that

they have not been used for training, they can be

used for testing the associated tree Ti

The error of instance x will be computed by using

the trees where x was not used for training

15
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

Random Forests. Ranking attributes

Compute out-of-bag error ê

Let’s recall that an attribute pk is just a column

of values in the training data table

Values of column pk are shuffled (sorted

randomly) and a new out-of-bag error is

computed: êpk

Attributes are sorted according to differences

êpk- ê. Those with larger differences are more

important for prediction

16

17

Random Forests. Summary

Only two new (hyper-)parameters: number of trees in the ensemble

(k) and size of the attribute subset (m)

Usually it outperforms single decision trees

Faster than standard Bagging (because only m<<M attributes are

considered for each node)

It provides an estimation success rate called “out-of-bag”: in

principle, it is not necessary to do train/test or crossvalidation.

It ranks attributes (the most relevant first): similarly to attribute

selection

It is able to return probabilistic predictions: if 90 trees say “+” and 10

say “-”, probability of “+” is 0.9

BOOSTING

18

19

Adaboost (boosting)

Like Bagging, Boosting trains different models with

different training sets

But Boosting constructs models sequentially

We know that the training data is a list of instances

(tuples):

{(x1,y1), …, (xa,ya), …, (xN,yN)}

In boosting, every instance a has a weight wa. Initially all

weights are the same for all instances wa=1/N

At every iteration, weights change, in order to give more

importance to more difficult instances (and contrariwise

for easy instances)

20

Adaboost (boosting)

1. Initially, all training instances use the same weight (wa=1/N)

2. A first classifier h0 is trained. Its training error is e0

3. Repeat while 0<ei<0.5

1. Create a new training set by giving larger weights to difficult instances:

1. If hi-1 fails with (xa,ya), increase wa =wa* (1-ei-1)/ei-1

2. If hi-1 succeeds with (xa,ya), decrease wa=wa* ei-1/(1-ei-1)

2. Train a new classifier hi with the new training set. Its error is ei ((computed on
the weighted training set)

The final classifier f is a linear combination of all hi.. The alpha coefficients depend on the
accuracy of hi

Note: if error εi small then αi large, if error εi large then αi is close to 0

Note: hi must return either +1 or -1 (positive / negative class in two-class problems), or an
intermediate value.

21

Computing alpha coefficients

Creating the new training set

Some ML algorithms are able to use training

sets with weights, so weights can be used

directly (for instance, decision trees)

If that is not the case, the new training set

can be created by:

— by multiplying instances according to their weights

— by randomly sampling the training set. The

probability that an instance is selected is

proportional to its weight:

 wa = wa / (w1+w2+…+wN)

22

23

24

25

1.9459*(+1) + 2.9323*(-1)+ 3.8744*(+1) = 2.888 > 0

1.9459*(-1) + 2.9323*(-1)+ 3.8744*(+1) = -1.0038 < 0

1.9459*(-1) + 2.9323*(+1)+ 3.8744*(+1) = 4.8608 > 0

2.888

= +

-1.0038

= -
4.8608

= +

1.9459*B1(x) + 2.9323*B2(x)+ 3.8744*B3(x) = f(x)

Boosting

Round 1 + + + -- - - - - -

Boosting

Round 2 - - - -- - - - + +

Boosting

Round 3 + + + ++ + + + + +

Overall + + + -- - - - + +

0.0094 0.0094 0.4623

0.3037 0.0009 0.0422

0.0276 0.1819 0.0038

B1

B2

B3

 = 1.9459

 = 2.9323

 = 3.8744

Example of boosting in 2D instance space

26

27

28

29

Boosting. Summary

It is one of the best ML algorithms, but it is sensitive to

noise (class overlap). The reason is that Boosting models

focuses on instances difficult to classify by the previous

model. But noisy instances are always difficult to classify.

Hence, Boosting will try to classify instances that cannot

be classified, by memorizing them (and therefore, will

incur in overfitting).

It has other advantages similar to Bagging (probabilistic

predictions, attribute ranking, out-of-bag estimations, …)

GRADIENT BOOSTING

Adaptation of Boosting for regression

Other names: Gradient Boosting, Gradient

Boosting Machines, …

In every iteration, it trains a model to predict the

difference between the actual output and the

output of the ensemble trained so far (pseudo-

residuals)

30

GRADIENT BOOSTING

Example, for minimizing mean squared error

1. Initialize h0(x) = average of outputs

2. FOR t = 1 TO T

— Compute a new training set, whose outputs are the

“pseudo-residuals”, where for each (xi, yi) we get an

instance (xi, yi-ft-1(x))
• Where ft-1(x) = h0(x)+ α1h1(x)+ … + αt-1 ht-1(x) ; the ensemble so far

— Train a new model ht(x) that fits the pseudo-residuals

— Compute αt in order to minimize the error of the

ensemble:

ft-1(x)+αtht(x)

— Update the ensemble: ft(x) = ft-1(x)+αtht(x)

31

GRADIENT BOOSTED TREES
It is Gradient Boosting with regression trees, but instead of

finding the optimal αt for ft-1(x)+αtht(x) …

32

Salary<4?

Age<30?
7.32

No Sí

Sí No

Children>2? Salary<7?

8.56 10.2 9.3 11.5

Salary<4?

Age<30?

7.32*αt

No Sí

Sí No

Children>2? Salary<7?

8.56*αt 10.2*αt 9.3*αt 11.5*αt

GRADIENT BOOSTED TREES

… a different alpha is optimized for every

leave: α0 α1 α2 α3 α4

33 33

Salario<4

?

Edad<30

?

7.32

No Sí

Sí No

Hijos>2? Salario<7

?

8.56 10.2 9.3 11.5

Salario<4?

Edad<30?

7.32*α0t

No Sí

Sí No

Hijos>2? Salario<7?

8.56*α1t 10.2*α2t 9.3*α3t 11.5*α4t

GBT and overfitting

All trees in the ensemble contain the same number

of leaves

In order to avoid overfitting:

— Control the number of trees T in the ensemble (small T

=> small overfitting)

— Shrinkage: ft(x) = ft-1(x)+v*αtht(x)

• Use a learning rate 0<v<1

• This decreases the weight of the model ht, and therefore it is

more difficult for the model to overfit the data

• But small v makes training slower

— Minimum number of instances in the leaves

34

Stochastic Gradient Boosting

In every iteration, a random sample without

replacement is used, instead of the whole

dataset.

Example: with a subsample of 0.8, only 80%

of the original dataset is used (and instances

are not repeated)

It avoids overfitting, because training data is

different for every model in the sample

It provides out-of-bag estimation

35

