
Main ideas for the final solution (not a complete solution): 

 

def distance(x): 

return np.linalg.norm(x-p) 

 

FOR K=2 

 

# First, we compute tuples of (distance to p, label)  

distances_rdd = data_rdd.map(lambda inst: (distance(inst.features), inst.label)) 

# Then, we compute the minimum distance 

min_distance = distances_rdd.map(lambda (dist, label): dist).reduce(min) 

# Then, we filter the tuple with exactly that distance and get the label 

class1 = distances_rdd.filter(lambda (dist, label): dist==min_distance).take(1)[0][1] 

 

# In order to get the second closest instance, we remove the instance with the closest distance: 

distances2_rdd = distances_rdd.filter(lambda (dist, label): dist>min_dist) 

# and would compute class2 as we did with class1 (not done here). 

 

Note 1: everytime an action is performed on distances_rdd, it is recomputed. Therefore, a more 

efficient solution would force distances_rdd to persist the first time it is defined, like this: 

 

distances_rdd = data_rdd.map(lambda inst: (inst, distance(inst.features))) 

distances_rdd.persist() 

 

Note 2: the former ideas assume that there are no two closest instances with the same distance, 

which is true for this particular point p. This could be checked with: 

 

distances_rdd.filter(lambda (dist, label): dist==min_distance).collect() 


