@ @ @ @ Ricardo Aler Mur

 This is a introductory tutorial for Python.

* There are many possibilities for using Python. In this case, and
for the rest of the course, Jupyter notebooks will be used. The
Anaconda environment will be used because It already contains
many of the Machine Learning libraries.

* First, Python object types are introduced, including strings, lists
and slicing operations. It is important to remark that numpy is
not explained here.

* Then, control sentences are explained (if, while, for, ...) and
also higher order functions that, in some cases, can be used
Instead of loops.

* Files (input / output operations) are explained at the end.

A Tutorial on the Python
Programming Language

by Ricardo Aler

What is Python?

General-purpose, high-level programming language
Code Is very readable

Includes different ways of programming:

— Object-oriented

— Imperative
— Functional programming

Python 2.x (2.7) vs. Python 3.x: most scientific
packages

Languages for data analysis poll

2015 primary programming language:

R (and its packages) (263) | 51%
(of 2015 votes)

Python (including T 20%

scikit-learn and other
libraries) (151)

Other (Java, MATLAB, T 17%
SAS, Scala, etc) (89)

none (9) D 1.8%

2014 primary programming language:

R (and its packages) (237) | 46% (of

2014 votes)

Python (including T 03%

scikit-learn and other
libraries) (117)

Other (Java, MATLAB, T o3

SAS, Scala, etc) (118)

none (40) L 7.8%

Here is a more detailed analvsis:

T

Python for Big Data

« Why Python?

« Many scientific and machine learning
packages: NumPy, SciPy, scikit-learn

 Also, nice interface for Spark (pyspark)

— R’s interface 1s not so well developed yet

Presentation Overview

Anaconda (Python + machine learning packages)
Data Types

Control Flow

Functions

Files

Modules

ANACONDA

* Free Python distribution. It includes over 300 of the most
popular Python packages for science, math, engineering,

data analysis.

Launcher:
— Ipython-qgtconsole
— Ipython-notebook

— Spyder-app:

« edit text files containing programs

e + console

(@ Launcher - Anaconda - Continuum Analytics

@ Launcher Environmen

oy G =1

e Ipython-notebook

Nb PPPPPPPPPPPPPPPP

1PW] ipython-qtconsole
uuuuuuuuuuuuuuu

ientific Python Development Environment

Install from: http://continuum.io/downloads
Remember to select Python 2.7!!

ANACONDA

If Launcher does not work, start applications directly from
Windows initial menu ;

|python-gtconsole
|python-notebook
— Jupyter

Spyder-app:
— edit text files containing programs
— + console

- AnacondaZ (64-bit)

J Anaconda Cloud
B Anaconda Prompt
IP IPython

~ Jupyter Notebook
i Jupyter (TConsole
@ Launcher

Reset Spyder Settings
& Spyder

| Blender Foundation Ayuda y soporte técnico
., Canon MP160
|
|

Eq IJiFIl}

Panel de control

Dispositivos e impresoras

Programas predeterminados

. Canon Utilities
. Cygwin
. Drophox v

1w

Buscar programas y archivos

Interactive vs. Scripts

eInteractive: typing Python commands in
the console (or the notebook) and
obtaining an answer

Script: a program Is created using a text
editor (for instance, with spyder)

>>> 'hello world!"

'hello world!'

Interactive use: Hello World

*Open Ipython-gtconsole / Jupyter QTconsole

At the prompt type ‘hello world!’

Like the gtconsole, but for the web browser

) Anaconda? [M'blt] 1 Bl Jupyter QtConscle E@g
J AHECDﬂdE Clﬂ'l..ld Eile Edit View Kernel Window Help
quJiFll:b Jupyter gtConscle 4.1.8 =
. Anaconda Prumpt Python 2.7.1@ |anaconda 2.4.8 (&4-bit)| (default, oct 21 2e15, 19:35:23) [MsSC

v.1522 &4 bit (AMDE4)]
Type "copyright™, "credits"™ or "license™ for more information.

Panel de control IP:,"tth 4.8.8 -- An enhanced Interactiwve Fython.

[P IPython
P
= -IUF"]I'tEf NDtEbDDk -» Introduction and overview of IPython's features.
%q|.|1ckr'e-F -» Quick reference.

@Ytn&r QTCDI"ISD'E . _ . help -» Python's own help system.
DISFIEISItI'!.I'CISElmprﬁﬂras object? -» Details about "object”', use 'object??' for extra details.

m

@ Launcher Xguiref -» A brief reference about the graphical user interface.
i : In [11: "hello world!®
& Reset Spyder Settings Programas predeterminados out[1]: 'hello world!®
@ Spyder In [2]: 3+ |
EH d F d A out[2]: 7
. blender Foundation - Erm
Ayuda y soporte técnico S—

. Canon MP160

. Canon Utilities

. Cygwin

.. Dropbox -

1 Abés

Like the gtconsole, but with a text editor
(and a whole programming environment)

The Python Interpreter

Python is an interpreted language

*The interpreter provides an
Interactive environment to play
with the language

*Results of expressions are printed
on the screen

>>> 3+ 7

10

>>>3< 15

True

>>> "print me'
'print me'

>>> print 'print me'
print me

>>>

Help

help(“print™)

Exercise

o Start the iIpython-gtconsole
« Compute 3+4 and see the answer
* See the help of “print”

Importing Modules

Sometimes, some functions are not directly
available in Python

They are included in modules

Modules have to be imported in order to use Its
functions

Example: ‘“+’ is included 1n base Python, but square
root (sqrt). sqrt is included in module math

Importing Modules

If we try to use sqrt, we get an error:

In [1]: sqrt(2)

NameError Traceback (most recent call last)
<ipython-input-1-40e415486bd6> in <module>()

----> 1 sqgrt(2)

NameError: name 'sgrt' is not defined

Importing Modules

Let’s import module math, and use the sqrt function within this
module, by means of the dot (.) notation

In [2]: import math

In [3]: math.sqrt(2)
Out[3]: 1.4142135623730951

The print Statement

eIt can be used to print results and

variables

>>> print 'hello’
*Elements separated by commas ¥

.) hello
print with a space between them >>> print 'hello’, ‘there
A comma at the end of the hello there

statement (print ‘hello’,) will not

print a newline character

Documentation

The ‘#’ starts a line comment

>>> "this will print’
'this will print’

>>> #'this will not'

>>2>

Exercise

» Modules contain functions, but also constants, like pi

« Import module math, assign 2*pi to variable my pi, and
print the result

In [29]: import math
In [30]: math.pi
Out[30]: 3.141592653589793

In [34]: my_pi = 2*math.pi

In [35]: my_pi

Out[35]: 6.283185307179586
In [36]: print(my_pi)
6.28318530718

In [37]: print(2*math.pi)
6.28318530718

Variables

« The variable is created the first time you assign it a value
 Everything in Python Is an object

>>>x =12

>>>y =" lumberjack "
>>> X

12
>>>y

* lumberjack ’

Object types in Python

* Atomic: numbers, booleans (true, false), ...

 Container: (contains other elements)

— Sequences:
* Strings: “Hello World!”
o Lists: [1, 2, “three”]
* Tuples: (1, 2, “three™)
— Sets: {'a', 'b', 'c'}
— Dictionaries: {“R”: 51, “Python”: 29}

Object types in Python with
nhumpy module

e Container:
— Vectors and matrices:

array([[1, 2, 3],
[4, 5, 6]])

Object types in Python with
Pandas module

e Container:

— Dataframes:

~ wpnNDEFE O

SepalLength SepalWidth PetalLength PetalWidth

5.1
4.9
4.7
4.6
5.0

3.5
3.0
3.2
3.1
3.6

1.4
1.4
1.3
1.5
1.4

0.2
0.2
0.2
0.2
0.2

Name
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa

Object types in Python

 Atomic: numbers, booleans (true, false), ...

« Compound:

— Sequences:
* Strings: “Hello World!”
o Lists: [1, 2, “three”]
e Tuples: (1, 2, “three™)
— Sets: {'a', 'b', 'c'}
— Dictionaries: {“R”: 51, “Python”: 29}

Numbers

e integer: 12345, -32 Operations with numbers:
* Python integer: 999999999L o+ - %/

o float: 1.23, 4e5, 3e-4 e **:power

e octal: 012, 0456 // Integer division

* hex: 0xf34, 0X12FA * 0o division remainder
e complex: 3+44, 2J, 5.0+2.5j .

>>> 123 + 222 # Integer addition

345

>>>15*4 # Floating-point multiplication

6.0

>>> 2 ** 100 # 2 to the power 100
1267650600228229401496703205376

Object types in Python

- Atomic: numbers, booleans (true, false), ...

« Compound:

— Sequences:
* Strings: “Hello World!”
o Lists: [1, 2, “three”]
e Tuples: (1, 2, “three™)
— Sets: {'a', 'b', 'c'}
— Dictionaries: {“R”: 51, “Python”: 29}

Booleans

Whether an expression is true or false

*Values: True, False

Comparisons: ==, <=, >=, =, .. Combinations: and, or, not
In [18]: 3==3 In [26]: (3==3)and (3<4)
Out[18]: True Out[26]: True
In[19]: 3==4 In[27]: (3==3) or (3<4)
Out[19]: False Out[27]: True
In[20]: 3< 4 In [28]: not((3 == 3) or (3 < 4))
Out[20]: True Out[28]: False
In [21]: "aa" < "bb"
Out[21]: True

Booleans

 Notes:
— 0 and None are false
— Everything else is true

— True and False are just aliases for 1 and O respectively

Object types in Python

* Atomic: numbers, booleans (true, false), ...

« Container:
— Sequences:

 STriNgs: “Hello World!”
o Lists: [1, 2, “three”]
e Tuples: (1, 2, “three™)
— Sets: {'a', 'b', 'c'}
— Dictionaries: {“R”: 51, “Python”: 29}

String Literals

» They can be defined either with double quotes () or single quotes ()

In [30]: "Hello world"
Out[30]: 'Hello world'

In [31]: 'hello world'
Out[31]: 'hello world'’

e + s overloaded to do concatenation

>>> x = 'hello’
>>> X = X + ' there'
>>> X

'hello there'

String Literals: multi-line

« Using triple quotes, strings can be defined across multiple lines

>>> g ="""]"m a string
much longer
than the others™"™

>>> print s

[’m a string

though I am much longer
than the others :)*

Strings: some functions

* len(string) — returns the number of characters in the String
» str(object) — returns a String representation of the Object

In [56]: x ='ABCDEF
In [57]: len(X)
Out[57]: 6

In [58]: str(10.1)
Out[58]: '10.1'

Strings: some functions

« Some string functions are available only within a module, and
the dot (.) notation must be used (similarly to math.sgrt()).
The module for strings is called str. This module is imported
automatically by the system.

 For instance, lower() and upper() are two such functions:

In [73]: x ='It was the best of times, it was the worst of times*

In [74]: str.lower(x.lower) # Convert to lowercase
Out[74]: 'it was the best of times, it was the worst of times*

In [75]: str.upper(x) # Convert to uppercase
Out[75]: 'I'T WAS THE BEST OF TIMES, IT WAS THE WORST OF TIMES'

String functions

 Other string functions: count, split, replace

In [73]: x ="lIt was the best of times, it was the worst of times'

In [77]: str.count(X, 'was') # count counts how many times ‘was’ appears in x
Out[77]: 2
In [79]: print(str.split(x, ' ")) # split splits string x with space * “ separator

['It', 'was', 'the', 'best’, 'of', 'times,’, 'It', 'was', 'the’, ‘worst', 'of', 'times']

In [80]: str.replace(x, 'was', 'is") # replace replaces ‘was’ by ‘is’ wherever it appears in X
Out[80]: "It is the best of times, it is the worst of times'

<
%
° . O{?
String functions %,
Typically, if you can call a function as module.function(object, other }..//

arguments), you can also use another equivalente (but shorter) syntax:
object.function(other arguments)

That is, there are two different (but equivalent) ways:
1. object.function(arguments)
2. module.function(object, arguments) # We already know this one

. Examples:ln [32]: x ='It was the best of times, 1t was the worst of times'

In [33]: x.lower() In [36]: x.upper()
Out[33]: "It was the best of times, | | Out[36]: 'IT WAS THE BEST OF TIMES,
it was the worst of times* IT WAS THE WORST OF TIMES®

In [34]: # is equivalent to In [37]: # is equivalent to
In [35]: str.lower(x) In [38]: str.upper(x)

Out[35]: "it was the best of times, | | Out[38]: 'IT WAS THE BEST OF TIMES,
it was the worst of times' IT WAS THE WORST OF TIMES'

String functions: 2 ways
« That s, there are two different (but equivalent) ways: g
1. object.function(arguments) 4”}

2. module.function(object, arguments) # We already know this one
Note: Use dir(°) to see all methods for strings (dir(3) shows all methods for integers, etc.)

o Examples: In[32]: x ='It was the best of times, it was the worst of times'

In [39]: x.count('was') In [45]: x.replace(‘was’, 'is')

Out[39]: 2 Out[45]: "It is the best of times, it is the worst of times'
In [40]: # is equivalent to In [46]: # is equivalent to:

In [41]: str.count(X, 'was') In [47]: str.replace(Xx, ‘'was', 'is")

Out[41]: 2 Out[47]: "It is the best of times, it is the worst of times

In [42]: print(x.split(* "))
['It', 'was', 'the', 'best’, 'of', 'times,’, 'it', 'was', 'the', 'worst', 'of', 'times']

In [43]: # is equivalent to:

In [44]: print(str.split(x, "))
['It', 'was', 'the', 'best’, 'of', 'times,’, 'it', 'was', 'the', ‘worst', 'of', 'times']

String functions: 2 ways %,

« That s, there are two different (but equivalent) ways:
1. object.function(arguments)

2. module.function(object, arguments) # We already know this one

In [39]: x.count(‘was')
Out[39]: 2

In [40]: # is equivalent to

In [41]: str.count(X, 'was')
Out[41]: 2

b)

Notice that the first way is shorter and you don’t
need to remember the name of the module (str)
Only those methods listed with dir(‘was’) can be
used

Exercise: string functions

« Split a sentence x using both syntax cases:
— First case: using split as a function of x (x.split)

— Second case: using split as a function of module str (str.split(x))

In [12]: x = "It was the best of times, it was the worst of times'
In [13]: x
Out[13]: 'It was the best of times, it was the worst of times'
In [14]: # First case In [16]: # Second case: split as function of module str
In [15]: x.split(* ") In [17]: strsplit(x, ' ")
Out[15]: Out[17]:
[It, ['Tt,
'was', 'was',
'the’, 'the’,
'best’, 'best!,
‘of’, 'of',
'times,’, 'times,’,
it it
'was', 'was',
'the’, 'the’,
'worst', 'worst',
'of’, 'of,
'times'] 'times']

Positive 1 2 3 4
indices
S 609 ‘17 62, ‘37 ‘47

659

Substrings (slicing)

Slicing = obtaining substrings from strings

>>> 5 ='012345°
>>> 5[0]

coa \
>>> 5[1]
¢ 1 b

>>> 5[3]

g
>>> 3[1:4]/

123’

Generic slicing sentence: s[start:end:by]
« Obtain elements from start to (end-1) with
steps of “by”

=~ MPORTANT:

«= start begins at O!!
 _ The slice (or substring) includes values
from start to end-1!!!

start >=0
end < len(s)
by: step

Positive
indices

Negative
indices

.« o+ =2 w5 Substrings (slicing)

>>> ¢ ="'012345' Generic sentence: s[start:end:by]
>>>5[2:] Excluding start or end is the same as
'2345' \ index O or last index, respectively
>>> s[:4] \\ s[2:] == s[2:6] == s[2:len(s)]
'0123' T s[:4] == 5[0:4]

>>2 S[-l]\
g Negative indices start at the end of the string

>>> S[-Z]\\ s[-1] == s[5] == s[len(s)-1]
‘4’ —— s[-2] == s[4] == s[len(s)-2]
>>> s[-6]< s[-6] = s[-len(s)] == s[0]

607

Substrings (slicing)

Slicing = obtaining sublists from strings (or from lists)

Positive
indices

Negative -6
indices
S 609 617 62’ 63) 649 659
Strlngz cAa cBa cca cD, ‘E, ‘F,
>>> string2 = ‘ABCDEF' >>> string2[-1]
>>> string2[2:] F
‘CDEF"' >>> string2[-2]
6E9
>>> 5[:4] :
>>> -
‘ ABCDE' i string2[-6]

Substrings (slicing)

Generic sentence: s[start:end:by]
by: step

>>> 5 ='012345'
>>>5[0:4:2] <—— Get indices from 0 to 3 by 2 (even indices)
‘02’
>>>[0::2] <—— Getindices from 0 to end by 2 (even indices)
‘024'
>>>g[-1:-1] . | Get indices from end to beginning by -1
5432107 (reverse order)

>>>g[-1:-2]

531" — Get Indices from end to beginning by -2

(indices 5, 3, 1 (or equivalently -1, -3, -5)

Exercise

1. Create any string, for instance:

‘In a village of La Mancha, the name of which I have no
desire to call to mind’

2. Convert it to uppercase:

'IN A VILLAGE OF LA MANCHA, THE NAME OF WHICH |
HAVE NO DESIRE TO CALL TO MIND'

3. Obtain another string by keeping one character

every four characters (via slicing):
' L LAAHAOH ANEE L D

Exercise: solution

In [76]: x ="'In a village of La Mancha, the name of which | have no desire to call to mind'
In [77]: x = x.upper()

In [78]: X

Out[78]: 'IN AVILLAGE OF LA MANCHA, THE NAME OF WHICH I HAVE NO
DESIRE TO CALL TO MIND'

In [79]: y = X[0::4]

In [80]: y
Out[80]: 'l L LAAHAOH ANEE L

String Formatting (1): %

e Similar to C’s printf
» <formatted string> % <elements to insert>

 Can usually just use %s for everything, it will convert the
object to its String representation.

>>>"0ne, %d, three" % 2
'One, 2, three'

>>> "%d, two, %s" % (1,3)

'1, two, 3

>>> "0ps two %s" % (1, 'three’)

'1 two three'
>>>

String Formatting (2): format

 <formatted string>.format(<elements to insert>)

>>>"0ne, {}, three".format(2)
'One, 2, three'

>>> {1, two, {}".format(1,3)

1, two, 3

>>>"{} two {}".format(1, 'three’)

'1 two three'

>>>"{0} two {1}".format(1, 'three’)
'l two three*

>>>"{1} two {0}".format(1, 'three’)
'‘three two 1'

Object types in Python

* Atomic: numbers, booleans (true, false), ...

« Compound:

— Sequences:
* Strings: “Hello World!”
o LiSts: [1, 2, “three”]
e Tuples: (1, 2, “three™)
— Sets: {'a', 'b', 'c'}
— Dictionaries: {“R”: 51, “Python”: 29}

Lists

Ordered collection of data >>>x = [1,'hello’, (3 + 2j)]
] >>> X

tElements can be of different 1. hello, (3+2j)]

YPES >>> X[2]

Same subset (slicing) (3+2))

operations as Strings >>>x[0:2]

[1, 'hello]

Lists: Modifying Content

Lists are mutable (i.e. they can be modified. Strings cannot)

« X[1] =a reassigns the ith >>> X =[1,2,3]
element to the value a >>>y =X

» Important: variables contain :zz i[l] =15
ref_erences (pointe_rs) t_o the 1, 15, 3]
object, not the object itself >>>

» Since x and y point to the s [1, 15, 3]

list object, both are changed

Lists: references vs. copies

» |f a copy Is needed instead of a reference, the copy
function can be used (import copy)

Reference: x and y are the same thing Copy: a and b are different things
In [58]: x =[1, 2, 3] In [63]: import copy
In [59]:y =X In [64]: a=11, 2, 3]

In [65]: b = copy.deepcopy(a)
In [60]: x[1] =15
In [66]: a[1] = 15

In [61]: X

Out[61]: [1, 15, 3] In [67]: a

In [62]: y Out[67]: [1, 15, 3]
Out[62]: [1, 15, 3] In [68]: b

Out[68]: [1, 2, 3]

Exercise: lists modifying content

1. Create a variable called list with numbers 1, 10, 100,
1000, 10000, 1000000

2. Modify variable list via slicing so that O appears
Instead of 1000

Exercise: solution

. Create a variable called list with numbers 1, 10, 100,
1000, 10000, 1000000

. Modify variable list via slicing so that O appears
Instead of 1000

In [115]: x =[1,10,100,1000,10000, 1000000]
In [116]: x[3] =0

In [117]: X

Out[117]: [1, 10, 100, 0, 10000, 1000000]

Lists: Modifying Content

Lists are mutable (i.e. they can be modified)

« X[I:J:K] = b reassigns the sublist defined by i:j:k to list b

In[7]: x=[0, 1, 2, 3, 4, 5]

In[8]:y =X

In [9]: X[1:3] = ['one’, 'two', 'three']

In [10]: x

Out[10]: [O, 'one’, 'twa', 'three’, 3, 4, 5]
In [11]:y

Out[11]: [0, 'one’, 'twao', 'three’, 3, 4, 5]

Lists: Modifying Content

x.append(12) inserts element 12 at
the end of the list

x.extend([13, 14]) extends list [12,
13] at the end of the list

In both cases the original list is
modified!!!

+ also concatenates lists, but it
does not modify the original list

In [14]: x =[1,2,3]

In [15]: x.append(12)

In [16]: X

Out[16]: [1, 2, 3, 12]

In [18]: x.extend([13, 14])
In [19]: x

Out[19]: [1, 2, 3, 12, 13, 14]

In [20]:y =1, 2, 3]

In [21]: y + [13, 14]
Out[21]: [1, 2, 3, 13, 14]
In [22]:y

Out[22]: [1, 2, 3]

Reminder: two ways of calling
functions on objects

 Let us remember that there are two ways of applying functions to
lists (just as with strings):

1. module.function(object, ...)
2. object.method(...)

In[27]: x =1, 2, 3]

In [28]: list.extend(x, [13, 14])
In [29]: X

Out[29]: [1, 2, 3, 13, 14]

is equivalent to:

In [30]: x =11, 2, 3]

In [31]: x.extend([13, 14])
In [32]: X

Out[32]: [1, 2, 3, 13, 14]

Lists: deleting elements
 Function del:

In [33]: x = range(10)

In [34]: x

Out[34]: [0, 1, 2, 3,4,5,6, 7,8, 9]
In [35]: del(x[1])

In [36]: X

Out[36]: [0, 2, 3,4, 5,6, 7, 8, 9]
In [37]: del(x[2:4])

In [38]: x

Out[38]: [0, 2,5, 6, 7, 8, 9]

Object types in Python

* Atomic: numbers, booleans (true, false), ...

« Compound:
— Sequences:
* Strings: “Hello World!”
o Lists: [1, 2, “three”]
e Tuples: (1, 2, “three”)
— Sets: {'a', 'b', 'c'}
— Dictionaries: {“R”: 51, “Python”: 29}

Tuples

« Tuples are immutable
versions of lists

 One strange point is the >>>x=(1,2,3)
format to make a tuple with >>>X[1]
one element: (2, 3) ~
>>>y =(2)
‘.’ 1s needed to differentiate >>>y
from the mathematical 1(2)
expression (2) — >>>

Object types in Python

* Atomic: numbers, booleans (true, false), ...

« Compound:

— Sequences:
* Strings: “Hello World!”
o Lists: [1, 2, “three”]
* Tuples: (1, 2, “three™)
— Sets: {'a', 'b', 'c'}
—Dictionaries: {“R”: 51, “Python”: 29}

Dictionaries
A set of key-value pairs
Dictionaries are mutable
Example number of bottles of different drinks

Access and modification by key

In [47]. d = {'milk": 3, 'beer": 21, 'olive oil"
2}

In [48]: d

Out[48]: {'beer': 21, 'milk": 3, 'olive oil': 2}
In [49]: d['milk']

Out[49]: 3

In [50]: d['milk'] = 4

In [51]: d

Out[51]: {'beer': 21, 'milk'; 4, 'olive oil": 2}

Dictionaries: Add/Delete

 Assigning to a key that does not exist adds an entry:

In [52]: d['coffee’] =3
In [53]: d
Out[53]: {'beer": 21, 'coffee': 3, 'milk': 4, 'olive oil': 2}

» Elements can be deleted with del (like with lists)

In [54]: del(d['beer'])
In [55]: d
Out[55]: {'coffee': 3, 'milk': 4, 'olive oil': 2}

Copying Dictionaries and Lists

e The built-in list
function will
copy a list

« The dictionary
has a method
called copy

>>> |1 =[1]
>>> |2 = list(11)
>>> |1[0] = 22
>>> |1

[22]

>>> |2

[1]

>>>d={1:10}
>>> d2 = d.copy()
>>> d[1] = 22
>>>

{1: 22}

>>> (2

{1: 10}

Data Type Summary

 Lists, Tuples, and Dictionaries are containers that
can store any type (including other lists, tuples, and

dictionaries!)
 Only lists and dictionaries are mutable

 All variables are references, but copies can be made

A Tutorial on the Python
Programming Language

by Ricardo Aler

The print Statement

eIt can be used to print results and

variables

>>> print 'hello’
*Elements separated by commas ¥

.) hello
print with a space between them >>> print 'hello’, ‘there
A comma at the end of the hello there

statement (print ‘hello’,) will not

print a newline character

Comments

The ‘#’ starts a line comment

>>> "this will print’
'this will print’

>>> #'this will not'

>>2>

Using the 1python-notebook

« We already know how
to use the gt-console

 The 1python-notebook
IS similar, but works In
the browser, and
allows to keep a record
of the Python session

. AnacondaZ (64-bit)
) Anaconda Cloud
M Anaconda Prompt o

IP IPython

Jupyter Noteboo

Equipo

Panel de control

& JupyterJTTonsole
@ Launcher

% Reset Spyder Settings
& Spyder

. Blender Foundation Ayuda y soporte técnico
. Canon MP160
. Canon Utilities

| Cygwin

Dispositivos impresoras

Programas predeterminados

| Drophbox

1 Atrés

I 1
e el el alal el i
ﬂ-.nl.'__.r' F; F; g1 F: r1||I &

« A new tab will open in your default browser
« Now, you have to go to your directory

- P"'Cibid“"' | Texaspro.. Aproposlogi.. = #Zap.. @) = Home / m\ T e
localhost: 8880 tree = Buscar ﬁ E (] = - 3 PY B =

— Jjupyter

Files Funning Clusters

T

To import a notebook, drag the file onto the listing below or click here. Mew - | ¥

m

O

-~ | W

[0 Anaconda3

(3O AnalisisDatos

O AppData

O BACKUPS

[0 Contacts

(3 Desktop

O Documents

O Downloads

[0 Dropbox

[0 EXPERIMENTOS

3 Facturas iberdrola

| OO0 0 000 0OoOoOO0oaOo

. Dropbox/tmp/my_directory/

((-) '@' localhost:2353 tree/ Dropbox/tmp/m « | & Q, Buscar ﬁ' | E ﬁ | x E'I | = 4- » =

Files Running Clusters
To import a notebook, drag the file onto the listing below or click here. Neww || &
@ Dropbox [tmp |/ my_directnD
(i

MNotebook list empty.

o Start a Python 2 notebook

et =l
-Iﬂ-sts... | Ewrk—... = Texas pra... | Apropos Logi... | 7 Elpac. o) -
\ (' | @ | localhost:8389/tree/Dropbox/tmp/m 7 | & || Q Buscar ﬂ' B H - = - 4 » =
-
= jupyter
Files Running Clusters
Select items to perform actions on them. Upload =
I
~ # [Dropbox | tmp / my_directory Text File
Folder
0.

Terminals Unavailable
MNotebook list empty.

Motebooks

lecalhost:8889/tree/ Dropbox/tmp/my_directory®

 You can type python commands in the cell

L(lspallc—... | = Texas pro... | Apropos Logi... | © Elpac.. #) | _ Dropbox/.. | _ Untitled > F =
localhost:3883 notebooks/ Drophbox” c Q, Buscar ‘ﬂ’ H - = - 4 » =
- .
e J u pyter Unt|t|Ed [autosaved) P
File Edit View Insert Cell Kernel & | Python 2 O

[~| cell Toolbar: None -]

B + = & 03 4+ 4+ W N

‘ In[]:| /

* Important:

— “Enter” changes to a new line WITHIN the cell
— In order to execute the commands in the cell, you have to type shift+enter
— Once you type shift+enter, a new cell is created. You can type new commands

| X4 Ispark-,,, | =/ Texas pro... | Apropos Logi... | 7 Hopac. & / Dropbom’...)f — Untitled x 1\- >+ -

localhost8889/ notebooks/Drophox’ {3’ E 2 d - B - ¥ » =
— J u pytEr Untltled {autosaved) ﬂ
File Edit View Insert Cell Help & | Python 2 O

+ = H B A v N C | code E| Cell Taolbar: Mone E|

 You can return to a previous cell and change it. You

need to re-execute It Wi

shift+enter (or ctrl+enter)

+ = BB 4+ W B C Ccode

In [3]: |y = 3+40000
¥

Cut[3]: 40003

In [4]: ¥ + 100

Cut[4]: 107

In []:

. . =NEC x|
L4 'spark—... = Texas pro.. Apropos Logi... 7 Elpac.. dd = Drophow/.. | Untitled = | > 4+ =
| J/ <
localhost:8889/ notebooks/Dropbox” Buscar 'ﬁ E U E - EI b “ » =
Jupyter UntltIEd {unsaved fhanges) ﬁ
File Edit View Insert Ce Kernel Help | Python 2 O

E Cell Toalbar: Mone |E|

* |f you want the changes to propagate to the
following cells, you have to execute all of
them again.

= Elﬂ

< 'Naspro... | Apropos Logi... | " Elpac.. o3 | - Dropbm{.f..._-}l,l"x " Untitled x“".kg Running ... > + =
localhost:8888/ notebooks/ Dropbox” [y Q, Buscar ﬂ’ g w E = E’l - “. » =
— Jupyter UntltIEd [autosawed) = ﬂ |
File Edit View Inset Cell Kemel Hefp (' localhost:8559 notebooks/Dropbox”
+ 3 A B 4 ¥ R =] centoony T JUPYTEr Untitled wre
Fun and Select Bejfow
Run and Insert Befow File Edit WView Insert Cell
I 3]: = 3+40000 Fun All
n [51: |y B+ = & B 4+ ¥ WA
= Run All Above
Cut[3]: 40003 Run All Below
In [4]: |y + 100 Cell Type ’ In [6]: |y = 3+40000
cut[4]: 107 f ¥
Current Cutput L
Qut[6]: 40003
In []1: All Qutput *

In [7]T |y + 100

out[7]: 40103

In []:

localhostB889 notebooks/Dropbox/tmp/my_directory/Untitled.ipynb?kernel_name=python2#

b

 |n a Python notebook, you can mix text, python

commands and results, by changing the cell type
/ o | B e

{ 'msprﬂ-... | Apropos Logi.. | 7 Elpac.. o) | - Dropboﬂnlj” " Untitled X\.II'LE Running ... > +

L localhost:3889/ notebooks/Dropbox” c Q, Buscar ﬁ B 9 d - - 4 » =
-._.- Ju pyter Unt'tIEd [autosaved) F
File Edit WView Insert Cell Kernel Help | Python2 O
+ = B 4+ Run EI Cell Toolbar: Mone IEI

Fun and Select Below

Fun and Insert Below

In [&]: | y = 3+40000 Fun All
Y Run All Above
Cut[& 40003 Run All Below
In [7]: y + 100 Cell Type ’ Code
Cut[7 40103 Markdown
Current Output Raw NBConvert
In []: All Qutput ¢

localhostEE29/ notebooks/Dropbox'trmp/my_directony/Untitled.ipynb?kernel_narme=python#

e Text mixed with code

L;F pro.. | Apropos Logi... | ° Elpac.. o | __ Dropbox/...

@m going to compute twice pi

€& | @ localhost:8889/ notebooks/Dropbox/’ ¢ || Q Buscar Ww B H - =5 - & » =
-, .
— Jupyter UntltIEd {unsaved changes) P
File Edit View Insert Cell Kermnel Help |F'3;th|:||12 o
+ = A B 4+ ¥ MWW B C code EI Cell Toolbar: Maone EI
out[6]: 40003
| In [7]: |y + 100
Out[7]: 40103 1

This Is text (markdown)

In [9]: | import math - - d
2 % math.pt This is code)
Out[9]: 6.283185307179586

In []1:

Markdown

iooks/Google%:20Drive/TRABA) JO ~ ¢ [INENREH
ter Untitled3 Last Checkpoint: 3 mir
« Markdown is a language to format text: Viw nset ol Kemel |

B+ 4+ N B C Code

— *this goes In italics*
— **this goes In boldfa@ e
This goes in italics
— #This 1s a header \ This goes in boldface
— ##This Is a subheader This is a header
— | can even write equations (in La :

o S\sqrt{\frac{x}{x+y}}$

This is a subheader

This is a list:
This is a list: chese
- Cheese . jam
- Wine | can even write equations: | /=
- Jam

You can even embed plots

w[=]
L’(prﬂxf | Untitled ® | = Running .. | = Howtow.. | ~ python - ... | [T] sin, sing, ...
= | @ | localhost:3839/notebooks/Dropbox/” c Q, Buscar ﬂ’ B @ - B - % » =
: Jupyter Untitled (memed sanges #
File Edit WView Insert Cell Kermel Help |F:r'tr'cr' 2 0
Z o4+ = A B % W B C Code [#] cell Toolbar: | None [~]

| can even write eguations ‘Eqrt{".fran{x]{x-P].r}}l -
<Fm [4]1: ®metplotlib inline

import matplotlib

import numpy as np
i import matplotlib_pyplot as plt

*x = np-arange({-Z*np.pi, Z*np.pi, 0.01)
¥ = np.3sin{x)

plt._ploti(x, ¥)

plt.show

1a

05 /
00
05|
= = 2 0

m

Saving the notebook

= Untitled

"

':\;(:"I:'@' localhost:3889/ notebooks/Dropbox” v | & ||Q Buscar | wWw B8 H - = - & » =

: J u pyter Unt|t|9d {unsaved changes)

File Edit Wiew Insert Cell Kermnel Help

[Mew Motebook k -+ + M B C Code IEI Cell Toolbar: Mone
Open... rFr ' '
Make a Copy... fmth
Hengame L.pi

Save and Chechkpoint ,_ 07179586

Revert to Checkpoint »

in italics
Print Preview & in boldface
Download as header
Trusted Motebook a subheader
Close and Halt) write equations [\sqrt{frac{x]{x+y} |
Pe—
In [1:

lzcalhostEE89/ notebooks/Dropbox/tmp/my_directory/Untitled.ipynb?kernel_name=python2#

Download the notebook

 |In several formats: (filename can be changed in File/Rename)
— Python notebook: it can be loaded again as a notebook

— Python script: this is a text file containing the sequence of Python commands.
Text is also stored as comments (#)

— html: it can be loaded later in a browser
— pdf (it might not work because it requires LaTeX)

Jupyter Untltled (sutosaved) P
File Edit View Insert Cell Kernel Help | Python2 O
MNew Motebook P v M B C) Code E| Cell Toolbar: None |z|
Open... r— ' '
Make a Copy. e
Rename... pi

Save and Checkpoint 357179586

Revert to Checkpoint »

in italics

Print Preview 5 in boldface

Download as » IPython Notebook (.ipynb)
Python (_py)

Trusted Motebook HTML (htmi)

Close and Halt Markdown (.md) v
reST (.rst)

In [1: PDF via LaTeX (_pdf)

localhost:8889/ notebooks/Dropbox/trmp/my_directory/Untitled.ipynb?kernel_name=python2#

Etc.

e |n order to finish the notebook:
— File / close and halt

 Jupyter notebooks have more options but
you can explore them yourselves

Exercise

 Try to get something similar to:

COMPUTING THE LENGTH OF A CIRCUMFERENCE

The length of a circunference with radius ris [= 2ar

In [10]: | import math

1 = 2Z*math.pi*r
print "Length is: {}".format (r

Length is: 3

HINT

COMPUTING THE LENGTH OF A CIRCUMFERENCE

The length of a circunference with radius #*r* is §1 = 2 A\pi rf

Topics

1. If ... then ... else

2. Loops:
— While condition ...
— For ...

3. Functions
4. High-level functions (map, filter, reduce)

If condition :
sentencel
sentence2

next sentence

If condition :
sentencel
sentence2

else :
sentencea
sentenceb

next sentence

If Statements

if condition :
sentencel
sentence?2

elif condition3 :
sentencea
sentenceb

else :
sentencex
sentencey

next sentence

Example:

Indentation

x = 30

if x<=15:)

™\ y=x+15

\elifx <=30(:)
y=x+30
les@

y—X
Sentence that C e
follows the L print 'y =",y
“i1f” (outside 7
of the “if” _
block) Result is: ?

If Statements

Example:

x = 30

if x<=15:)

y=x+15
elif x <= 30(:)

Resultis: y = 60

Note on indentation

Python uses indentation instead of
braces (or curly brackets) to
determine the scope of expressions

All lines must be indented the same
amount to be part of the scope (or
Indented more if part of an inner
scope)

This forces the programmer to use
proper indentation since the
Indenting is part of the program!

Indentation made of four spaces Is
recommended

Indentation

Sentence that
follows the

Example:

x = 30
ifx<=15:
N y=x+15
x}lifx<=30 ;

“if” (outside 7
of the “if”
block)

While Loops

While condition is true, execute sentences in the while block
(sentencel, sentence2, ...)

Whlle CO”ditiOﬂ@ phrase = ['Somewhere', 'in', 'La', 'Mancha']
index = 0
Sentencel while index < len (phrase)
sentence2 print phrase[index]
index = index + 1

print '** Words printed, while :finished!!'’

Next sentence ; N
(outside while block) | i,

La
Mancha
** Words printed, while finished!!

For Loops

variable takes succesive values in the sequence

for variable in sequenc@
sentencel
sentence2

Next sentence (outside for block)

phrase = ['Somewhere', 'in', 'La', "Mancha']
index = 0
for word in phrase
print word
print '** Words printed, "for loop" finished!!'"

Somewhere

in

La

Mancha

** Words printed, "for loop" finished!!

Exercise

Create a list of numbers [0, 1, 3, 4, 5, 6]

Iterate over this list by using a for loop

— For each element in the list, print “even” if the
number Is even and “odd” If the number iIs odd

Reminder: a number x Is even If the
remainder of the division by 2 is zero. That
1S: (X% 2==0)

Once you are done, try with another list:
[1,7, 3, 2, 0]

Solution

In [13]:

This 15 equivalent teo myList = [0, 1, 2, 3, 4, 5, &]

myList = range (7}

for element in myList:
if (element % 2 == 0):
print ("Even")
el=se:
print ("0dd")

Even
0Odd

Even
Odd

Even
0dd
Ewven

Function Definition

“return X’ returns the value and ends the function exectution

def functionName(argumentl, argument2, ...) : | def max(x,y) :
sentencel TEE eV

return =

sentence?2 e -

return vy

max (3,5

Parameters: Defaults

e Parameters can be
assigned default values

* They are overridden if a
parameter is given for
them

‘ _ http://localhost:8888/notebooks/Google:20D

—jupyter untiteds tastc

File Edit

View Insert

B + = & 0B 4+ ¥

In [4]:

In [5]:

Ccut[3] :

In [&]:

cut[e] :

Ce

g

|

def double (x=0) :

return (2%*x)

double ()

0

double (10

20

Parameters: Named

 Call by name

In [V]: def myPrint(a,b,c):
 Any positional e A
arguments Must In [B]: myPrint(e=10, a=2, b=14)
come before 2 14 10
named ones In a in [0]: [EEE——

call 3 19 2

Exercise

Define a function myDif that returns:

— If (a-b)>0 then (a-b)

— Otherwise b-a

Both a and b should have default values of 0

You need to use If

Try the following function calls and see what happens:
— myDif(1,2)

— myDif(2,1)

— myDif(2)

— myDif(b=2,a=1)

Solution

In [18]:

In []:

def myDif {a=0, b=0):
result = a-b
if (result=0):
return (result)
el=e:
return (-result)

print (myDif (1,2))
print (myDif (2,1))
print (myDif (2})
print (myDif (b=2,a=1))

1

1
2
1

Higher-Order Functions

map(func,seq) — for all i, applies func(seq[i]) and returns the corresponding
sequence of the calculated results.

filter(boolfunc,seq) — returns a sequence containing all those items in seq for

which boolfunc is True. Notice that a

function Is passed
as argument!!

def double (x) :
"U"MTEt multiplies x by 2"""

return 2*x

def even(x):
""wTt checks whether x is ev

[L]

return x % Z ==

True or False"""

Turns

1st = range (10)
print "Applying
print map (double, range
print "Filtering selecting even elements in {}".format (lst)
print filter (even, range(10)

1 elements in {}".format (lst)

Applying double to &l1 elements in [0, 1, 2, 3, 4, 5, &, 7, 8, 9]

(o, 2, 4, &, 8, 10, 12, 14, 1le, 18]

Filtering / selecting even elements in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 2, 4, &, 8]

Higher-Order Functions

reduce(func,seq) — applies func to the items of seq, from left to
right, two-at-time, to reduce the seq to a single value.

Example: reduce(addition, [1,2,3,4]) = 1+2+3+4 =10

def addition(x,vy):
return xX+y

1st = range (10)
print "Adding all numbers in {}".format(lst)

print reduce (addition, 1lst

1, 2, 3, 4, 5, 6, 7, 8, 9]

Adding all numbers in [0,
45

Higher-Order Functions with
lambda functions

map(func,seq) — for all i, applies func(seq[i]) and returns the corresponding
sequence of the calculated results.

filter(boolfunc,seq) — returns a sequence containing all those items in seq for
which boolfunc is True.

l=t = range(10)

print "Applying doubkle to all elements in {}".format (1st)
print map(lambda x: x*2, range(10})

print "Filtering / selecting even elementz= in {}".format (lst)
print filter(lambda x: x % 2 = 0, range(10})

LApplying double te all elements in [0, 1, 2, 3, 4, 3, &, 7, 8, 9]
(o, 2, 4, &, 8, 10, 12, 14, le, 18]

Filtering / selecting even elements in [0, 1, 2, 3, 4, 5, &, T,
(o, 2, 4, &, 8]

Higher-Order Functions with
lambda functions

reduce(func,seq) — applies func to the items of seq, from left to
right, two-at-time, to reduce the seq to a single value.

l=t = range (10}
print "Adding all numbers in {}".format {lst)

print reduce (lambda x,y: x+y , lst

2dding all numbers in [0, 1, 2, 3, 4,
45

Exercise

 Use a higher-order function (map) with
lambda-function that adds 2 to every
number in a list

+ Apply it to this list: [1, 5, 7]

Solution

In [19]: map(lambda x: x+Z2, [l, 3, 7]]

Cut [19]: [3, T, 9]

Modules: Imports

Different ways of Imporfting moduales
RERFFRAERERFFEEFAEHERRESE

i1mport modul=sName
REREFHFFIFRIFRERRFFERTEFE

Tm this case, functicons must be called as:
moduleName. functionName (.. .)

import math

print math.=grt (2)

REREFRFEF AT risitsdsasgss

import modulsNamse as otherName #F

e R R

In this case, functicns must be called as:
otherWName.functionNams({...)

import numpy as npy
print npy.arange (2)

XS ST E L E LT LT LS ESEEEELEEEESS

from module 1mport funcEtion coctherNams #F

HERBFRFAFERFRITIAFRIR IR IR FERFHFIRFH

Tm this rcase, functicons can be caliled as-
functionName(...)

from math import sgrt
print =grt(Z)

1.41421356237
[o 1]
1.41421356237

In [Z20]:

Writing and reading files

mySentence = "Humber three is {}".format (3)
print (mySentence)

Now, we open file "myFil
mf = open("myFile.txt"™,
Then we write the sentenc
mf.write (mySentence)

Finally, we close the file
mE.close ()

=

- L
for writing

—o . = 5 -

Now, we open the file for reading

mf = open{"myfile.txt™, "r")

We read the whole file inteo variable sentenceFromFils
gsentenceFromFile = mf.read()

We close the file

mf.claze ()

And print the s ence, 1n order to checke whether it
print (sentenceFromFile)

Humber three is 3
Humber three is 3

i=

-~
L=

he

Files: Input

Inflobj = open(‘data’, ‘r’) Open the file ‘data’ for
Input.

S = inflobj.read() Read whole file into one
String

S = inflobj.read(N) Reads N bytes
(N >=1)

L = inflobj.readlines() Returns a list of line
strings

Files: Output

outflobj = open(‘data’, ‘w’) | Open the file ‘data’

for writing
outflobj.write(S) Writes the string S to

file
outflobj.writelines(L) Writes each of the

strings in list L to file

outflobj.close() Closes the file

EXTRA MATERIAL: LOOPS
AND LIST COMPREHENSIONS

Loop Control Statements

break Jumps out of the closest
enclosing loop (or while)

continue Jumps to the top of the closest
enclosing loop (or while)

pass Does nothing, empty statement
placeholder

The Loop Else Clause

» The optional else clause runs only if the loop exits
normally (not by break)

while condition : for variable in sequence :
sentencel sentencel
sentence?2 sentence2
else: else:
sentencea sentencea
sentenceb sentenceb
Next sentence Next sentence (outside
(outside while block) for block)

The Loop Else Clause

» The optional else clause runs only if the loop exits
normally (not by break)

number = 14

factor = 2
while factor < number :
1f number % factor == 0 :
print "Number {} is not a prime number".format (number)
break
else:
factor = factor + 1
else:

print "Number {} is prime".format (number)

Number 14 is not a prime number

The Loop Else Clause

» The optional else clause runs only if the loop exits
normally (not by break)

number = 13
Note: range(a,b) produces a list of numbers from a to n-1
print range (Z, number)
for factor in range (Z, number)
if number % factor ==
print "Number {} is not a prime number".format (number)
break
else: # this block is executed when the loop for exits without break
print "Number {} 1s prime".format (number)

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Number 13 is prime

Higher-Order Functions with list
comprehensions

lst = range{10)

print "The felleowing is equivalent to map (double, 1st)}"™
print [double{a) for a in 1lst]

print "The felleowing is equivalent to filter{even, 1lst)}"
print [a for a in 1lst if even(a)]

The fellowing is equivalent to map(double, lst)
[a, 2, 4, &, 8, 10, 12, 14, 1le, 18]

The feollowing is equivalent te filter(ewven, lst)
[a, 2, 4, &, 8]

Higher-Order Functions with
list comprehensions

reduce(func,seq) — applies func to the items of seq, from left to
right, two-at-time, to reduce the seq to a single value.

l=t = range (10}
print "Adding all numbers in {}".format {lst)

print reduce (lambda x,y: x+y , lst

2dding all numbers in [0, 1, 2, 3, 4,
45

Functions are first class objects

« Can be assigned to a variable
X =MaxX

« Can be passed as a parameter
« Can be returned from a function

* Functions are treated like any other variable in
Python, the def statement simply assigns a
function to a variable

Anonymous Functions

« A lambda

expression returns a - _
function object >>>1=lambdax,y :x+y
>>> f(2,3)

 The body canonly |5

be a simple
expression, not
complex statements

