
Ricardo Aler Mur

• This is a introductory tutorial for Python.

• There are many possibilities for using Python. In this case, and

for the rest of the course, Jupyter notebooks will be used. The

Anaconda environment will be used because it already contains

many of the Machine Learning libraries.

• First, Python object types are introduced, including strings, lists

and slicing operations. It is important to remark that numpy is

not explained here.

• Then, control sentences are explained (if, while, for, …) and

also higher order functions that, in some cases, can be used

instead of loops.

• Files (input / output operations) are explained at the end.

A Tutorial on the Python
Programming Language

by Ricardo Aler

What is Python?

• General-purpose, high-level programming language

• Code is very readable

• Includes different ways of programming:

– Object-oriented

– Imperative

– Functional programming

• Python 2.x (2.7) vs. Python 3.x: most scientific

packages

Languages for data analysis poll

Python for Big Data

• Why Python?

• Many scientific and machine learning

packages: NumPy, SciPy, scikit-learn

• Also, nice interface for Spark (pyspark)

– R’s interface is not so well developed yet

Presentation Overview

• Anaconda (Python + machine learning packages)

• Data Types

• Control Flow

• Functions

• Files

• Modules

ANACONDA

• Free Python distribution. It includes over 300 of the most

popular Python packages for science, math, engineering,

data analysis.

• Launcher:

– Ipython-qtconsole

– Ipython-notebook

– Spyder-app:

• edit text files containing programs

• + console

Install from: http://continuum.io/downloads

Remember to select Python 2.7!!

ANACONDA
• If Launcher does not work, start applications directly from

Windows initial menu

• Ipython-qtconsole

• Ipython-notebook

– Jupyter

• Spyder-app:

– edit text files containing programs

– + console

Interactive vs. Scripts

>>> 'hello world!'

'hello world!'

•Interactive: typing Python commands in

the console (or the notebook) and

obtaining an answer

•Script: a program is created using a text

editor (for instance, with spyder)

Interactive use: Hello World
•Open Ipython-qtconsole / Jupyter QTconsole

•At the prompt type ‘hello world!’

Like the qtconsole, but for the web browser

Like the qtconsole, but with a text editor

 (and a whole programming environment)

The Python Interpreter

•Python is an interpreted language

•The interpreter provides an

interactive environment to play

with the language

•Results of expressions are printed

on the screen

>>> 3 + 7

10

>>> 3 < 15

True

>>> 'print me'

'print me'

>>> print 'print me'

print me

>>>

Help

help(“print”)

Exercise

• Start the ipython-qtconsole

• Compute 3+4 and see the answer

• See the help of “print”

Importing Modules

• Sometimes, some functions are not directly

available in Python

• They are included in modules

• Modules have to be imported in order to use its

functions

• Example: ‘+’ is included in base Python, but square

root (sqrt). sqrt is included in module math

Importing Modules

In [1]: sqrt(2)

NameError Traceback (most recent call last)

<ipython-input-1-40e415486bd6> in <module>()

----> 1 sqrt(2)

NameError: name 'sqrt' is not defined

If we try to use sqrt, we get an error:

Importing Modules

Let’s import module math, and use the sqrt function within this

module, by means of the dot (.) notation

In [2]: import math

In [3]: math.sqrt(2)

Out[3]: 1.4142135623730951

The print Statement

>>> print 'hello'

hello

>>> print 'hello', 'there'

hello there

•It can be used to print results and

variables

•Elements separated by commas

print with a space between them

•A comma at the end of the

statement (print ‘hello’,) will not

print a newline character

Documentation

>>> 'this will print'

'this will print'

>>> #'this will not'

>>>

The ‘#’ starts a line comment

Exercise

• Modules contain functions, but also constants, like pi

• Import module math, assign 2*pi to variable my_pi, and

print the result

 In [29]: import math

In [30]: math.pi

Out[30]: 3.141592653589793

In [34]: my_pi = 2*math.pi

In [35]: my_pi

Out[35]: 6.283185307179586

In [36]: print(my_pi)

6.28318530718

In [37]: print(2*math.pi)

6.28318530718

Variables

• The variable is created the first time you assign it a value

• Everything in Python is an object

>>> x = 12

>>> y = " lumberjack "

>>> x

12

>>> y

’ lumberjack ’

Object types in Python

• Atomic: numbers, booleans (true, false), …

• Container: (contains other elements)

– Sequences:

• Strings: “Hello World!”

• Lists: [1, 2, “three”]

• Tuples: (1, 2, “three”)

– Sets: {'a', 'b', 'c'}

– Dictionaries: {“R”: 51, “Python”: 29}

Object types in Python with
numpy module

• Container:

– Vectors and matrices:

array([[1, 2, 3],

 [4, 5, 6]])

Object types in Python with
Pandas module

• Container:

– Dataframes:

 SepalLength SepalWidth PetalLength PetalWidth Name

0 5.1 3.5 1.4 0.2 Iris-setosa

1 4.9 3.0 1.4 0.2 Iris-setosa

2 4.7 3.2 1.3 0.2 Iris-setosa

3 4.6 3.1 1.5 0.2 Iris-setosa

4 5.0 3.6 1.4 0.2 Iris-setosa

Object types in Python

• Atomic: numbers, booleans (true, false), …

• Compound:

– Sequences:

• Strings: “Hello World!”

• Lists: [1, 2, “three”]

• Tuples: (1, 2, “three”)

– Sets: {'a', 'b', 'c'}

– Dictionaries: {“R”: 51, “Python”: 29}

Numbers

• integer: 12345, -32

• Python integer: 999999999L

• float: 1.23, 4e5, 3e-4

• octal: 012, 0456

• hex: 0xf34, 0X12FA

• complex: 3+4j, 2J, 5.0+2.5j

>>> 123 + 222 # Integer addition

345

>>> 1.5 * 4 # Floating-point multiplication

6.0

>>> 2 ** 100 # 2 to the power 100

1267650600228229401496703205376

Operations with numbers:

• +, -, *, /

• **: power

• // integer division

• % division remainder

• …

Object types in Python

• Atomic: numbers, booleans (true, false), …

• Compound:

– Sequences:

• Strings: “Hello World!”

• Lists: [1, 2, “three”]

• Tuples: (1, 2, “three”)

– Sets: {'a', 'b', 'c'}

– Dictionaries: {“R”: 51, “Python”: 29}

Booleans

•Values: True, False

In [18]: 3 == 3

Out[18]: True

In [19]: 3 == 4

Out[19]: False

In [20]: 3 < 4

Out[20]: True

In [21]: "aa" < "bb"

Out[21]: True

Whether an expression is true or false

Comparisons: ==, <=, >=, !=, … Combinations: and, or, not

In [26]: (3 == 3) and (3 < 4)

Out[26]: True

In [27]: (3 == 3) or (3 < 4)

Out[27]: True

In [28]: not((3 == 3) or (3 < 4))

Out[28]: False

Booleans

• Notes:

– 0 and None are false

– Everything else is true

– True and False are just aliases for 1 and 0 respectively

Object types in Python

• Atomic: numbers, booleans (true, false), …

• Container:

– Sequences:

• Strings: “Hello World!”

• Lists: [1, 2, “three”]

• Tuples: (1, 2, “three”)

– Sets: {'a', 'b', 'c'}

– Dictionaries: {“R”: 51, “Python”: 29}

String Literals

• They can be defined either with double quotes (“) or single quotes (‘)

• + is overloaded to do concatenation

>>> x = 'hello'

>>> x = x + ' there'

>>> x

'hello there'

In [30]: "Hello world"

Out[30]: 'Hello world'

In [31]: 'hello world'

Out[31]: 'hello world'

String Literals: multi-line

>>> s = """ I’m a string

much longer

than the others"""

>>> print s

 I’m a string

though I am much longer

than the others :)‘

• Using triple quotes, strings can be defined across multiple lines

Strings: some functions

• len(string) – returns the number of characters in the String

• str(object) – returns a String representation of the Object

In [56]: x = 'ABCDEF'

In [57]: len(x)

Out[57]: 6

In [58]: str(10.1)

Out[58]: '10.1'

Strings: some functions

• Some string functions are available only within a module, and

the dot (.) notation must be used (similarly to math.sqrt()).

The module for strings is called str. This module is imported

automatically by the system.

• For instance, lower() and upper() are two such functions:

In [73]: x = 'It was the best of times, it was the worst of times‘

In [74]: str.lower(x.lower) # Convert to lowercase

Out[74]: 'it was the best of times, it was the worst of times‘

In [75]: str.upper(x) # Convert to uppercase

Out[75]: 'IT WAS THE BEST OF TIMES, IT WAS THE WORST OF TIMES'

String functions

In [73]: x = 'It was the best of times, it was the worst of times'

In [77]: str.count(x, 'was') # count counts how many times ‘was’ appears in x

Out[77]: 2

In [79]: print(str.split(x, ' ')) # split splits string x with space ‘ ‘ separator

['It', 'was', 'the', 'best', 'of', 'times,', 'it', 'was', 'the', 'worst', 'of', 'times']

In [80]: str.replace(x, 'was', 'is') # replace replaces ‘was’ by ‘is’ wherever it appears in x

Out[80]: 'It is the best of times, it is the worst of times'

• Other string functions: count, split, replace

String functions
• Typically, if you can call a function as module.function(object, other

arguments), you can also use another equivalente (but shorter) syntax:

object.function(other arguments)

• That is, there are two different (but equivalent) ways:

1. object.function(arguments)

2. module.function(object, arguments) # We already know this one

• Examples:

In [33]: x.lower()

Out[33]: 'it was the best of times,

it was the worst of times‘

In [34]: # is equivalent to

In [35]: str.lower(x)

Out[35]: 'it was the best of times,

it was the worst of times'

In [36]: x.upper()

Out[36]: 'IT WAS THE BEST OF TIMES,

IT WAS THE WORST OF TIMES‘

In [37]: # is equivalent to

In [38]: str.upper(x)

Out[38]: 'IT WAS THE BEST OF TIMES,

IT WAS THE WORST OF TIMES'

String functions: 2 ways
• That is, there are two different (but equivalent) ways:

1. object.function(arguments)

2. module.function(object, arguments) # We already know this one

• Note: Use dir(‘ ‘) to see all methods for strings (dir(3) shows all methods for integers, etc.)

• Examples:
In [39]: x.count('was')

Out[39]: 2

In [40]: # is equivalent to

In [41]: str.count(x, 'was')

Out[41]: 2

In [42]: print(x.split(' '))

['It', 'was', 'the', 'best', 'of', 'times,', 'it', 'was', 'the', 'worst', 'of', 'times']

In [43]: # is equivalent to:

In [44]: print(str.split(x, ' '))

['It', 'was', 'the', 'best', 'of', 'times,', 'it', 'was', 'the', 'worst', 'of', 'times']

In [45]: x.replace('was', 'is')

Out[45]: 'It is the best of times, it is the worst of times'

In [46]: # is equivalent to:

In [47]: str.replace(x, 'was', 'is')

Out[47]: 'It is the best of times, it is the worst of times

String functions: 2 ways

• That is, there are two different (but equivalent) ways:

1. object.function(arguments)

2. module.function(object, arguments) # We already know this one

In [39]: x.count('was')

Out[39]: 2

In [40]: # is equivalent to

In [41]: str.count(x, 'was')

Out[41]: 2

a) Notice that the first way is shorter and you don’t

need to remember the name of the module (str)

b) Only those methods listed with dir(‘was’) can be

used

Exercise: string functions
• Split a sentence x using both syntax cases:

– First case: using split as a function of x (x.split)

– Second case: using split as a function of module str (str.split(x))

In [14]: # First case

In [15]: x.split(' ')

Out[15]:

['It',

'was',

'the',

'best',

'of',

'times,',

'it',

'was',

'the',

'worst',

'of',

'times']

Substrings (slicing)

>>> s = '012345'

>>> s[0]

‘0’

>>> s[1]

‘1’

>>> s[3]

'3'

>>> s[1:4]

'123'

Slicing = obtaining substrings from strings

• Generic slicing sentence: s[start:end:by]

• Obtain elements from start to (end-1) with

steps of “by”

• IMPORTANT:

• start begins at 0!!

• The slice (or substring) includes values

from start to end-1!!!

• start >= 0

• end < len(s)

• by: step

Positive

indices

0 1 2 3 4 5

s ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’

Substrings (slicing)

>>> s = '012345'

>>> s[2:]

'2345'

>>> s[:4]

'0123'

>>> s[-1]

‘5‘

>>> s[-2]

‘4’

>>> s[-6]

‘0’

Generic sentence: s[start:end:by]

s[2:] == s[2:6] == s[2:len(s)]

s[:4] == s[0:4]

s[-1] == s[5] == s[len(s)-1]

s[-2] == s[4] == s[len(s)-2]

s[-6] = s[-len(s)] == s[0]

Negative indices start at the end of the string

Excluding start or end is the same as

index 0 or last index, respectively

Positive

indices

0 1 2 3 4 5

Negative

indices

-6 -5 -4 -3 -2 -1

s ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’

Substrings (slicing)
Slicing = obtaining sublists from strings (or from lists)

Positive

indices
0 1 2 3 4 5

Negative

indices
-6 -5 -4 -3 -2 -1

s ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’

string2 ‘A’ ‘B’ ‘C’ ‘D’ ‘E’ ‘F’

>>> string2 = ‘ABCDEF'

>>> string2[2:]

‘CDEF'

>>> s[:4]

‘ABCDE'

>>> string2[-1]

‘F‘

>>> string2[-2]

‘E’

>>> string2[-6]

‘A’

Substrings (slicing)

>>> s = '012345'

>>> s[0:4:2]

‘02'

>>> s[0::2]

‘024'

>>> s[-1::-1]

‘543210’

>>> s[-1::-2]

‘531'

• Generic sentence: s[start:end:by]

• by: step

Get indices from 0 to 3 by 2 (even indices)

Get indices from 0 to end by 2 (even indices)

Get indices from end to beginning by -1

(reverse order)

Get indices from end to beginning by -2

(indices 5, 3, 1 (or equivalently -1, -3, -5)

Exercise

1. Create any string, for instance:

‘In a village of La Mancha, the name of which I have no

desire to call to mind’

2. Convert it to uppercase:
'IN A VILLAGE OF LA MANCHA, THE NAME OF WHICH I

HAVE NO DESIRE TO CALL TO MIND'

3. Obtain another string by keeping one character

every four characters (via slicing):
'I L LAAHAOH ANEE L D'

Exercise: solution
In [76]: x = 'In a village of La Mancha, the name of which I have no desire to call to mind'

In [77]: x = x.upper()

In [78]: x

Out[78]: 'IN A VILLAGE OF LA MANCHA, THE NAME OF WHICH I HAVE NO

DESIRE TO CALL TO MIND'

In [79]: y = x[0::4]

In [80]: y

Out[80]: 'I L LAAHAOH ANEE L

String Formatting (1): %

• Similar to C’s printf

• <formatted string> % <elements to insert>

• Can usually just use %s for everything, it will convert the
object to its String representation.

>>> "One, %d, three" % 2

'One, 2, three'

>>> "%d, two, %s" % (1,3)

'1, two, 3'

>>> "%s two %s" % (1, 'three')

'1 two three'

>>>

String Formatting (2): format
• <formatted string>.format(<elements to insert>)

>>> "One, {}, three".format(2)

'One, 2, three'

>>> “{}, two, {}".format(1,3)

'1, two, 3'

>>> "{} two {}".format(1, 'three')

'1 two three'

>>> "{0} two {1}".format(1, 'three')

'1 two three‘

>>> "{1} two {0}".format(1, 'three')

'three two 1'

Object types in Python

• Atomic: numbers, booleans (true, false), …

• Compound:

– Sequences:

• Strings: “Hello World!”

• Lists: [1, 2, “three”]

• Tuples: (1, 2, “three”)

– Sets: {'a', 'b', 'c'}

– Dictionaries: {“R”: 51, “Python”: 29}

Lists

• Ordered collection of data

• Elements can be of different

types

• Same subset (slicing)

operations as Strings

>>> x = [1,'hello', (3 + 2j)]

>>> x

[1, 'hello', (3+2j)]

>>> x[2]

(3+2j)

>>> x[0:2]

[1, 'hello']

Lists: Modifying Content

• x[i] = a reassigns the ith

element to the value a

• Important: variables contain

references (pointers) to the

object, not the object itself

• Since x and y point to the same

list object, both are changed

>>> x = [1,2,3]

>>> y = x

>>> x[1] = 15

>>> x

[1, 15, 3]

>>> y

[1, 15, 3]

Lists are mutable (i.e. they can be modified. Strings cannot)

Lists: references vs. copies

• If a copy is needed instead of a reference, the copy

function can be used (import copy)

In [58]: x = [1, 2, 3]

In [59]: y = x

In [60]: x[1] = 15

In [61]: x

Out[61]: [1, 15, 3]

In [62]: y

Out[62]: [1, 15, 3]

In [63]: import copy

In [64]: a = [1, 2, 3]

In [65]: b = copy.deepcopy(a)

In [66]: a[1] = 15

In [67]: a

Out[67]: [1, 15, 3]

In [68]: b

Out[68]: [1, 2, 3]

Reference: x and y are the same thing Copy: a and b are different things

Exercise: lists modifying content

1. Create a variable called list with numbers 1, 10, 100,

1000, 10000, 1000000

2. Modify variable list via slicing so that 0 appears

instead of 1000

Exercise: solution

1. Create a variable called list with numbers 1, 10, 100,

1000, 10000, 1000000

2. Modify variable list via slicing so that 0 appears

instead of 1000

In [115]: x = [1,10,100,1000,10000, 1000000]

In [116]: x[3] = 0

In [117]: x

Out[117]: [1, 10, 100, 0, 10000, 1000000]

Lists: Modifying Content

• x[i:j:k] = b reassigns the sublist defined by i:j:k to list b

Lists are mutable (i.e. they can be modified)

In [7]: x = [0, 1, 2, 3, 4, 5]

In [8]: y = x

In [9]: x[1:3] = ['one', 'two', 'three']

In [10]: x

Out[10]: [0, 'one', 'two', 'three', 3, 4, 5]

In [11]: y

Out[11]: [0, 'one', 'two', 'three', 3, 4, 5]

Lists: Modifying Content

• x.append(12) inserts element 12 at

the end of the list

• x.extend([13, 14]) extends list [12,

13] at the end of the list

• In both cases the original list is

modified!!!

• + also concatenates lists, but it

does not modify the original list

In [14]: x = [1,2,3]

In [15]: x.append(12)

In [16]: x

Out[16]: [1, 2, 3, 12]

In [18]: x.extend([13, 14])

In [19]: x

Out[19]: [1, 2, 3, 12, 13, 14]

In [20]: y = [1, 2, 3]

In [21]: y + [13, 14]

Out[21]: [1, 2, 3, 13, 14]

In [22]: y

Out[22]: [1, 2, 3]

Reminder: two ways of calling
functions on objects

• Let us remember that there are two ways of applying functions to

lists (just as with strings):

1. module.function(object, …)

2. object.method(…)

In [27]: x = [1, 2, 3]

In [28]: list.extend(x, [13, 14])

In [29]: x

Out[29]: [1, 2, 3, 13, 14]

is equivalent to:

In [30]: x = [1, 2, 3]

In [31]: x.extend([13, 14])

In [32]: x

Out[32]: [1, 2, 3, 13, 14]

Lists: deleting elements

In [33]: x = range(10)

In [34]: x

Out[34]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [35]: del(x[1])

In [36]: x

Out[36]: [0, 2, 3, 4, 5, 6, 7, 8, 9]

In [37]: del(x[2:4])

In [38]: x

Out[38]: [0, 2, 5, 6, 7, 8, 9]

• Function del:

Object types in Python

• Atomic: numbers, booleans (true, false), …

• Compound:

– Sequences:

• Strings: “Hello World!”

• Lists: [1, 2, “three”]

• Tuples: (1, 2, “three”)

– Sets: {'a', 'b', 'c'}

– Dictionaries: {“R”: 51, “Python”: 29}

Tuples

• Tuples are immutable

versions of lists

• One strange point is the

format to make a tuple with

one element:

 ‘,’ is needed to differentiate

from the mathematical

expression (2)

>>> x = (1,2,3)

>>> x[1:]

(2, 3)

>>> y = (2,)

>>> y

(2,)

>>>

Object types in Python

• Atomic: numbers, booleans (true, false), …

• Compound:

– Sequences:

• Strings: “Hello World!”

• Lists: [1, 2, “three”]

• Tuples: (1, 2, “three”)

– Sets: {'a', 'b', 'c'}

– Dictionaries: {“R”: 51, “Python”: 29}

Dictionaries
• A set of key-value pairs

• Dictionaries are mutable

• Example number of bottles of different drinks

• Access and modification by key

In [47]: d = {'milk': 3, 'beer': 21, 'olive oil':

2}

In [48]: d

Out[48]: {'beer': 21, 'milk': 3, 'olive oil': 2}

In [49]: d['milk']

Out[49]: 3

In [50]: d['milk'] = 4

In [51]: d

Out[51]: {'beer': 21, 'milk': 4, 'olive oil': 2}

Dictionaries: Add/Delete
• Assigning to a key that does not exist adds an entry:

• Elements can be deleted with del (like with lists)

In [52]: d['coffee'] = 3

In [53]: d

Out[53]: {'beer': 21, 'coffee': 3, 'milk': 4, 'olive oil': 2}

In [54]: del(d['beer'])

In [55]: d

Out[55]: {'coffee': 3, 'milk': 4, 'olive oil': 2}

Copying Dictionaries and Lists

• The built-in list

function will

copy a list

• The dictionary

has a method

called copy

>>> l1 = [1]

>>> l2 = list(l1)

>>> l1[0] = 22

>>> l1

[22]

>>> l2

[1]

>>> d = {1 : 10}

>>> d2 = d.copy()

>>> d[1] = 22

>>> d

{1: 22}

>>> d2

{1: 10}

Data Type Summary

• Lists, Tuples, and Dictionaries are containers that

can store any type (including other lists, tuples, and

dictionaries!)

• Only lists and dictionaries are mutable

• All variables are references, but copies can be made

A Tutorial on the Python
Programming Language

by Ricardo Aler

The print Statement

>>> print 'hello'

hello

>>> print 'hello', 'there'

hello there

•It can be used to print results and

variables

•Elements separated by commas

print with a space between them

•A comma at the end of the

statement (print ‘hello’,) will not

print a newline character

Comments

>>> 'this will print'

'this will print'

>>> #'this will not'

>>>

The ‘#’ starts a line comment

Using the ipython-notebook

• We already know how

to use the qt-console

• The ipython-notebook

is similar, but works in

the browser, and

allows to keep a record

of the Python session

• A new tab will open in your default browser

• Now, you have to go to your directory

• Start a Python 2 notebook

• You can type python commands in the cell

• Important:
– “Enter” changes to a new line WITHIN the cell

– In order to execute the commands in the cell, you have to type shift+enter

– Once you type shift+enter, a new cell is created. You can type new commands

• You can return to a previous cell and change it. You

need to re-execute it with shift+enter (or ctrl+enter)

• If you want the changes to propagate to the

following cells, you have to execute all of

them again.

• In a Python notebook, you can mix text, python

commands and results, by changing the cell type

• Text mixed with code

This is text (markdown)

This is code

Markdown

• Markdown is a language to format text:

– *this goes in italics*

– **this goes in boldface**

– #This is a header

– ##This is a subheader

– I can even write equations (in LaTeX):

• $\sqrt{\frac{x}{x+y}}$

 This is a list:

- Cheese

- Wine

- Jam

You can even embed plots

Saving the notebook

Download the notebook

• In several formats: (filename can be changed in File/Rename)

– Python notebook: it can be loaded again as a notebook

– Python script: this is a text file containing the sequence of Python commands.

Text is also stored as comments (#)

– html: it can be loaded later in a browser

– pdf (it might not work because it requires LaTeX)

Etc.

• In order to finish the notebook:

– File / close and halt

• Jupyter notebooks have more options but

you can explore them yourselves

Exercise

• Try to get something similar to:

HINT

Topics

1. If … then … else

2. Loops:

– While condition …

– For …

3. Functions

4. High-level functions (map, filter, reduce)

If Statements

if condition :

 sentence1

 sentence2

 …

next sentence

if condition :

 sentence1

 sentence2

 …

else :

 sentencea

 sentenceb

 …

next sentence

if condition :

 sentence1

 sentence2

 …

elif condition3 :

 sentencea

 sentenceb

 …

else :

 sentencex

 sentencey

 …

next sentence

Example:

Indentation

Sentence that

follows the

“if” (outside

of the “if”

block) Result is: ?

If Statements

Example:

Result is: y = 60

Note on indentation

• Python uses indentation instead of
braces (or curly brackets) to
determine the scope of expressions

• All lines must be indented the same
amount to be part of the scope (or
indented more if part of an inner
scope)

• This forces the programmer to use
proper indentation since the
indenting is part of the program!

• Indentation made of four spaces is
recommended

Example:

Indentation

Sentence that

follows the

“if” (outside

of the “if”

block)

While Loops

while condition :

 sentence1

 sentence2

 …

Next sentence

(outside while block)

While condition is true, execute sentences in the while block

(sentence1, sentence2, …)

For Loops

for variable in sequence :

 sentence1

 sentence2

 …

Next sentence (outside for block)

variable takes succesive values in the sequence

Exercise

• Create a list of numbers [0, 1, 3, 4, 5, 6]

• Iterate over this list by using a for loop

– For each element in the list, print “even” if the

number is even and “odd” if the number is odd

• Reminder: a number x is even if the

remainder of the division by 2 is zero. That

is: (x % 2 == 0)

• Once you are done, try with another list:

[1, 7, 3, 2, 0]

Solution

Function Definition
“return x” returns the value and ends the function exectution

def functionName(argument1, argument2, …) :

 sentence1

 sentence2

 …

Parameters: Defaults

• Parameters can be

assigned default values

• They are overridden if a

parameter is given for

them

Parameters: Named

• Call by name

• Any positional

arguments must

come before

named ones in a

call

Exercise
• Define a function myDif that returns:

– If (a-b)>0 then (a-b)

– Otherwise b-a

• Both a and b should have default values of 0

• You need to use if

• Try the following function calls and see what happens:

– myDif(1,2)

– myDif(2,1)

– myDif(2)

– myDif(b=2,a=1)

Solution

Higher-Order Functions
map(func,seq) – for all i, applies func(seq[i]) and returns the corresponding

sequence of the calculated results.

filter(boolfunc,seq) – returns a sequence containing all those items in seq for

which boolfunc is True.
Notice that a

function is passed

as argument!!

Higher-Order Functions

reduce(func,seq) – applies func to the items of seq, from left to

right, two-at-time, to reduce the seq to a single value.

Example: reduce(addition, [1,2,3,4]) = 1+2+3+4 = 10

Higher-Order Functions with
lambda functions

map(func,seq) – for all i, applies func(seq[i]) and returns the corresponding

sequence of the calculated results.

filter(boolfunc,seq) – returns a sequence containing all those items in seq for

which boolfunc is True.

Higher-Order Functions with
lambda functions

reduce(func,seq) – applies func to the items of seq, from left to

right, two-at-time, to reduce the seq to a single value.

Exercise

• Use a higher-order function (map) with

lambda-function that adds 2 to every

number in a list

• Apply it to this list: [1, 5, 7]

Solution

Modules: Imports

Writing and reading files

Files: Input

inflobj = open(‘data’, ‘r’) Open the file ‘data’ for

input.

S = inflobj.read() Read whole file into one

String

S = inflobj.read(N) Reads N bytes

(N >= 1)

L = inflobj.readlines() Returns a list of line

strings

Files: Output

outflobj = open(‘data’, ‘w’) Open the file ‘data’

for writing

outflobj.write(S) Writes the string S to

file

outflobj.writelines(L) Writes each of the

strings in list L to file

outflobj.close() Closes the file

EXTRA MATERIAL: LOOPS

AND LIST COMPREHENSIONS

Loop Control Statements

break Jumps out of the closest

enclosing loop (or while)

continue Jumps to the top of the closest

enclosing loop (or while)

pass Does nothing, empty statement

placeholder

The Loop Else Clause

• The optional else clause runs only if the loop exits

normally (not by break)

while condition :

 sentence1

 sentence2

 …

else:

 sentencea

 sentenceb

Next sentence

(outside while block)

for variable in sequence :

 sentence1

 sentence2

 …

else:

 sentencea

 sentenceb

Next sentence (outside

for block)

The Loop Else Clause

• The optional else clause runs only if the loop exits

normally (not by break)

The Loop Else Clause

• The optional else clause runs only if the loop exits

normally (not by break)

Higher-Order Functions with list
comprehensions

Higher-Order Functions with
list comprehensions

reduce(func,seq) – applies func to the items of seq, from left to

right, two-at-time, to reduce the seq to a single value.

Functions are first class objects

• Can be assigned to a variable

x = max

• Can be passed as a parameter

• Can be returned from a function

• Functions are treated like any other variable in

Python, the def statement simply assigns a

function to a variable

Anonymous Functions

• A lambda
expression returns a
function object

• The body can only
be a simple
expression, not
complex statements

>>> f = lambda x,y : x + y

>>> f(2,3)

5

