
Operating	Systems

OPERATING SYSTEMS:

Lesson 3:
Introduction to Process Management

1

Jesús Carretero Pérez
David Expósito Singh
José Daniel García Sánchez
Francisco Javier García Blas
Florin Isaila

Operating	Systems

Contents

¨Process	concept.
¨Basic	lifecycle	of	a	process.
¨Process	information
¨Multitasking.
¨Context	switch.
¨Generating	an	executable.

2

Operating	Systems

Process

• Process:	Program	in	execution.
– Each	execution	of	a	program	leads	to	a	process.
– Process	is	the	unit	of	management	for	operating	system

• A	process	consists	of:
– Program	text:	Instructions.
– Set	of	data	associated	to	program	execution.

3

Operating	Systems

Program	execution

Executable
Program

A

M
ai

n
M

em
or

y

Process A1

Process A2

4

Operating	Systems

Memory	representation

• A	process	needs	
memory	for	
instructions	and	data.

• Different	instances	of	a	
program	need	
independent	areas	for	
data.

text

data

heap

stack

5

Operating	Systems

Contents

¨Process	concept.
¨Basic	lifecycle	of	a	process.
¨Process	information
¨Multitasking.
¨Context	switch.
¨Generating	an	executable.

6

Operating	Systems

Basic	lifecycle	of	process

Running

BlockedReady

Wait an event

End of event blocking

Time-slice
finished

Activation

As many as
processors

7

New processes

Fin

Operating	Systems

Simplified	queuing	model:
Single	processor

Processor

Ev 1

New processes Finished processes

Ev 2

Ev 3
…

End of time-slice

8

Operating	Systems

Simplified	queuing	model:
Multiple	processors

Processor

Ev 1

New processes

Ev 2

Ev 3

…

End of time-slice

Finished
Processes

9

Operating	Systems

Contents

¨Process	concept.
¨Basic	lifecycle	of	a	process.
¨Process	information
¨Multitasking.
¨Context	switch.
¨Generating	an	executable.

10

Operating	Systems

Process	information

• All	the	information	allowing	the	process	correct	
execution.

• Three	categories:
– Information	stored	in	the	processor.
– Information	stored	in	memory.
– Additional	information	managed	by	operating	system.

11

Operating	Systems

Processor	state

¨Processor	state	includes	values	of	processor	registers.
¤Registers	accessible	in	user	mode.

¤ General	registers:	 Register	file.
¤ Program	counter.
¤ Stack	pointer.
¤ User	part	in	status	register.

¤Registers	accessible	in	privileged	mode:
n Privileged	part	from	status	register.
nMemory	management	 registers	(e.g.	PTBR).

¨Context	switch:
¨ Save	processor	state	for	outgoing	process.
¨ Restore	processor	state	for	incoming	process.

12

Operating	Systems

Memory	image	of	a	process

¨Memory	image	consists	of	the	memory	spaces	that	
a	process	is	authorized	to	use.

¨If	a	process	generates	an	address	out	of	the	address	
space,	hardware	generates	a	trap.

¨Depending	on	specific	computer,	memory	image	
may	be	referred	to	virtual	memory	or	physical	
memory.

13

Operating	Systems

Memory	image	models:
Single	region

• Process	with	a	single	fixed	size	region.
– Used	in	systems	without	virtual	memory.

• Process	with	a	single	variable	sized	region.
– Systems	without	virtual	memory:

• Need	reserve	space	" Memory	waste.

– Systems	with	virtual	memory:
• Virtual	reserve	space	" Feasible	but	less	flexible	than	multiple	
region.

• Not	used.

14

Operating	Systems

Memory	image	models:
Multiple	regions

• Process	with	fixed	number	of	regions	of	variable	
size.
– Prefixed	regions	(text,	data,	stack).
– Each	region	may	grow.
– With	virtual	memory,	the	hole	between	stack	and	heap	
does	not	consume	resources.

text

data

stack

15

Operating	Systems

Memory	image	models:
Multiple	regions

• Process	with	variable	number	of	regions	of	variable	
size.
– More advanced	option	(used	in	current	versions	in	
Windows	and	UNIX).

– Process	structured	as	a	number	of	regions.
– Very	flexible:

• Shared	regions.
• Regions	may	differ	in	permissions.

16

Operating	Systems

Operating	system	information

17

• Operating	system	keeps	additional	information	on	
processes.

• Operating	system	keeps	information	in	a	table:	Process	
Table.

• Process	Control	Block (PCB):	Each	entry	in	table	keeps	
information	about	one	process.

• Almost	all	information	about	process	stored	in	PCB.
nSome	information	elements	kept	outside	due	to	
implementation	reasons.

Operating	Systems

Example:
•Process identification.
•Parent process identification.
•User information.

Contenidos	del	BCP

• Identification
information.

• Processor	state.
• Process	control
information.

18

On process start:
•Initial values for processor state.
After context switch:
•Copy state values to processor.

Scheduling and state information:
•Process state.
•Waited event (if blocked).
•Process priority.
•Scheduling information.
Allocated regions description.
•Per region information.
Allocated resources:
•Open files.
•Used communication ports.
•Timers.
Pointers for structuring process
queues (or rings).
Information for inter process
communication.

Operating	Systems

Information	out	of	PCB

• Not	all	the	information	referred	to	a	process	is	stored	in	its	
PCB.

• Decision	taken	in	function	of:
– Efficiency.

• Tables	should	have	a	prefixed	size	and	always	be	in	memory.
• Size	needs	to	be	optimized.

– Information	Sharing.
• If	data	needs	to	be	shared	it	cannot	be	in	the	PCB.
• Pointers	are	used	to	point	to	other	structures	 (tables)	allowing	for	
information	 sharing.

– Open	files.
– Memory	pages.

19

Operating	Systems

Page	Table

• Placed	outside	PCB.

• Describes	process	memory	image.
• PCB	contains	pointer	to	page	table.
• Reasons:

– Variable	size.
– Memory	sharing	among	processes	requires	it	to	be	
external	to	PCB.

20

Operating	Systems

File	position	pointers

• Placed	outside	PCB.

• If	added	to	open	files	table	(in	PCB)	cannot	be	
shared.

• If	associated	to	i-node	is	always	shared.

• Stored	in	a	common	structure	for	multiple	processes	
and	a	new	one	allocated	with	OPEN	service.

21

Operating	Systems

Example:	Running	a	command

#include <sys/types.h>

#include <stdio.h>
int main(int argc, char** argv) {
pid_t pid;
pid = fork();
switch (pid) {

case -1: /* error */
exit(-1);

case 0: /* proceso hijo */
if (execvp(argv[1], &argv[1])<0) { perror(“error”); }
break;

default:
printf(“Proceso padre”);

}

return 0;
}

prog cat f1

22

Operating	Systems

Fork	service

• pid_t fork(void);

¨ Duplicates	process	invoking	the	call.
¨ Parent	process	and	child	process	go	on	running	the	same	program.
¨ Child	process	inherits	open	files	from	parent	process.

¨ Open	file	descriptors	are	copied.
¨ Pending	alarms	are	deactivated.

• Returns:
– -1	on	error.
– In	parent	process:	child	process	descriptor.
– In	child	process:	0.

23

Operating	Systems

Fork	service

24

Process A

Process A’

FORK

Operating	Systems

Exec	service

• Single	service	with	multiple	 library	functions.
int execl(const char *path, const char *arg, ...);
int execv(const char* path, char* const argv[]);
int execve(const char* path, char* const argv[], char* const envp[]);
int execvp(const char *file, char *const argv[])

• Changes	current	process	image.
– path:	path	to	executable	 file.
– file:	Looks	for	the	executable	file	in	all	directories	specified	by	PATH.

• Description:
– Returns	-1	on	error,	otherwise	it	does	not	return.
– The	same	process	runs	another	program.
– Open	files	remain	open.
– Signals	with	default	action	remain	defaulted,	signals	with	handler	take	default	

action.

25

Operating	Systems

Exec	service

26

Process A

Proceso A’

EXEC

Process B

Operating	Systems

Exit	service

• Finalizes	process	execution.

void exit(status);

• All	open	files	descriptors	are	closed.
• All	process	resources	are	released.
• PCB (Process	Control	Block)	is	released.

27

Operating	Systems

Contents

¨Process	concept.
¨Basic	lifecycle	of	a	process.
¨Process	information
¨Multitasking.
¨Context	switch.
¨Generating	an	executable.

28

Operating	Systems

Operating	system	types

Operating Systems

Multiprocess
(several processes

running)

Multiuser
(several users

at a time)

Monouser
(a single user

at a time)

Monoprocess
(single process)

Monouser
(a single user at a

time)

29

Operating	Systems

Principles	of	multitasking

• Real	parallelism	between	I/O	and	CPU	(DMA).
• Process	alternate	between	I/O	and	processing	
phases.

• Several	processes	stored	in	memory.

30

Operating	Systems

Advantages	of	multitasking

• Eases	programming,	dividing	a	program	in	multiple	
processes	(modularity).

• Allows	simultaneous	interactive	service	of	multiple	
users	in	an	efficient	way.

• Takes	advantage	of	times	a	process	spends	waiting	
for	an	I/O	operation	to	be	completed.

• Increases	utilization	of	CPU.

31

Operating	Systems

Multiprogramming	degree

• Multiprogramming	
degree:	Number	of	
active	processes.

• Main	memory	needs:	
System	without	virtual	
memory.

32

100%

Multiprogramming degree

%
 C

PU
 u

til
iz

at
io

n

Operating	Systems

Multiprogramming:	CPU	use

1 process

2 processes

Execution

I/O

33

Operating	Systems

Multiprogramming	and	virtual	memory

• Systems	with	virtual	memory:
– Divide	addressing	space	of	processes	in	pages.
– Divide	physical	memory	addressing	space	in	main	memory	
in	page	frames.

• At	a	given	time,	each	process	has	a	certain	number	
of	its	pages	in	main	memory	(resident	set).

34

Operating	Systems

Memory	needs:
Virtual	memory	system

Pa
ge

 fr
am

es
 p

er
 p

ro
ce

ss

Multiprogramming degree

35

Operating	Systems

Performance:	
Small	physical	memory

¨When	
multiprogramming	
degree	increases:
¨ Resident	set	size	

decreases	for	each	
process.

¨Trashing	happens	before	
achieving	a	high	CPU	
utilization	percentage.

¨Solution:	Add	more	main	
memory.

100%

Multiprogramming degree

%
 C

PU
 u

til
iz

at
io

n

36

Operating	Systems

Performance:	
Large	physical	memory

• When	multiprogramming	
degree	increases:
– Resident	set	size	decreases	for	

each	process.

• High	CPU	utilization	percentage	
is	achieved	with	less	processes	
that	fit	in	memory.

• Solution:	Improve	processor	or	
add	more	processors.

100%

Multiprogramming degree

%
 C

PU
 u

til
iz

at
io

n

37

Operating	Systems

Contents

¨Process	concept.
¨Basic	lifecycle	of	a	process.
¨Process	information
¨Multitasking.
¨Context	switch.
¨Generating	an	executable.

38

Operating	Systems

Context	switching

• When	operating	system	assigns	processor	to	a	new	
process.

• Actions:
– Save	process	state	in	PCB	for	process	in	execution.
– Restore	state	of	new	process	in	processor.

39

Operating	Systems

Context	switch

Save state in PCB0

Restore state from PCB1

Save state in PCB1

Restore state from PCB0

40

Operating	Systems

Context	switching	types

¨Voluntary	context	switch:
¤ Process	performs	call	to	operating	system	(or	generates	exception	like	

page	fault)	implying	waiting	for	an	event.
¤Running	" Blocked.
¤ Examples:	reading	from	terminal,	page	fault.
¤Reason	⇒ Processor	use	efficiency.

¨ Involuntary	context	switch:
¤OS	appropriates	CPU.
¤Running	" Ready.
¤ Examples:	time	slice	ellapsed or	process	moves	from	blocked	to	ready	

and	has	higher	priority.
¤Reason	⇒ Processor	use	sharing

41

Operating	Systems

Contents

¨Process	concept.
¨Basic	lifecycle	of	a	process.
¨Process	information
¨Multitasking.
¨Context	switch.
¨Generating	an	executable.

42

Operating	Systems

Executable	generation

Linker (ld)

Compiler

a.c

a.o

Compiler

b.c

b.o

p

Relocatable object files separately
generated

Executable object file (contains code and data
for all defined functions in a.c and b.c).

43

Operating	Systems

Link	Editor	(linker)

n Combines	object	files:
¨ Merges	several	relocatableobject	files	(.o)	in	a	single	

executable	object	file:	input	for	loader.

n Resolves	external	references:
¨ References	to	symbols	defined	in	other	object	file.

n Relocates	symbols:
n From	relative	positions	in	.o	to	absolute	positions	in	

executable:	adjust	refs	to	these	new	positions.
n Symbols:	refs	to	functions	and	data.

44

Operating	Systems

Ejemplo:	Formato	ELF

n ELF:	Executable	and	Linkable	Format

¨ formato	binario	estándar	para	ficheros	objeto
¨ original	de	System	V	à BSD,	Linux,	Solaris
¨ formato	unificado	para:

n ficheros	objeto	reubicables
n ficheros	objeto	ejecutables
n ficheros	objeto	compartidos

45

Operating	Systems

ELF	format

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.txt

.rel.data

.debug

Section header table
(required for relocatables)

0

Code

“block started by
symbol” Non-

initialized static
data

Type (.o, .exe, .so, etc); machine;
Big /Little end; etc

Symbol
table

Relocation
info

Iinitialized static
data

46

Operating	Systems

Executable	load

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

.text segment
(r/o)

.data segment
(initialized r/w)

.bss segment
(uninitialized r/w)

Process image

0x08048494

init and shared lib
segments

0x080483e0

Virtual addr

0x0804a010

0x0804a3b0

MEMORY
DISK

47

Operating	Systems

Static	library

Compiler

a.c

a.o

Compiler

b.c

b.o libc.a
Static library: file with
contatenation of relocatable
object files.

Executable object file: includes code from functions
in libc used in the program.

Linker (ld)

p

48

Operating	Systems

Static	and	dynamic	libraries

n Drawbacks	of	static	libraries:
¨ Code	potentially	duplicated	in	executables:

¨ Disk	(file	system).
¨ Virtual	memory	space	in	processes.

¨ Bugs	in	libraries	" new	version	" need	to	relink

n Solution:	dynamic	libraries	(*.so) (dynamic	link	libraries,	
DLLs):	
n Components	loaded	in	memory	and	executed	at	runtime.
n Functions	from	libraries	may	be	shared	among	multiple	processes.

49

Operating	Systems

Dynamic	libraries

Functions from libc.so and invoked from
a.c and b.c are loaded and linked.
Potentially shared among multiple
processes.

Shared library

Compiler

a.c

a.o

Compiler
b.c

b.o

libc.so

Linker (ld)

p

Cargador / Enlazador
dinámico

(ld-linux.so)

Executable in memory P’
50

Operating	Systems

Reminder

¨ Difference	between	program	and	process.
¨ A	process	is	a	porgram in	execution.

¨ Operating	system	manages	running	processes	(process	lifecycle).
¨ Process	information	consisting	of:	process	state,	memory	image	

and	PCB.
¨Multitasking	allows	a	better	use	of	computer	resources.
¨ Context	switching	introduces	a	small	overhead.
¨ Static	libraries	are	linked	at	compile	time	while	dynamic	libraries	

are	linked	at	process	creation	time.
¨ Process	creation	implies	creation	of	its	memory	image	and	the	

allocation	of	a	PCB.

51

Operating	Systems

OPERATING SYSTEMS:

Lesson 3:
Introduction to Process Management

52

Jesús Carretero Pérez
David Expósito Singh
José Daniel García Sánchez
Francisco Javier García Blas
Florin Isaila

