
Operating	Systems

OPERATING SYSTEMS:

Lesson 12:
Directories

1

Jesús Carretero Pérez
David Expósito Singh
José Daniel García Sánchez
Francisco Javier García Blas
Florin Isaila



Operating	Systems

Goals

• To	know	the	concepts	of	file	and	directory	and	their	
characteristics.

• To	use	file	and	directory	management	services	
offered	by	de	operating	system.

• To	understand	a	file	system	structure.
• To	understand	the	mechanisms	supporting	a	file	
server	and	to	apply	them	to	simple	exercises.

2



Operating	Systems

Content

• Directories
• Structure	alternatives
• Name	interpretation
• Directory	handling.

3



Operating	Systems

File	organization

• A	file	system	may	store	a	great	number	of	files.

• Mechanism	needed	to	organize	and	locate	files.

– Extensions:	Organization	by	file	type.

– Directory:	abstraction	of	a	file	container.

4



Operating	Systems

Concept

• Directory:	
– Object	uniquely	relating	a	user	file	name	with	an	internal	file	

descriptor.

• Organizes	and	provides	information	about	the	file	system	
structure.

• A	directory	has	an	entry	per	stored	file.

• Entry	information:
– Internal	file	descriptor.
– In	some	cases,	some	file	attributes.

5



Operating	Systems

Example:	Windows	explorer

6



Operating	Systems

Directories:	logical	view

• Hierarchical	approach.
• When	a	file	is	opened	the	OS	looks	for	the	name	in	the	

directory	structure.

• Operations	on	directories:
– Create	and	erase	directories.
– Open	and	close	directories.
– Rename	directory.
– Read	directory	entries.

• Directory	hierarchical	organization:
– Simplifies	file	naming	(unique	names).
– Provides	distribution	management	=>	group	files	logically	
(same	user,	same	application,	same	task,	…)

7



Operating	Systems

Content

• Directories
• Structure	alternatives
• Name	interpretation
• Directory	handling.

8



Operating	Systems

Structure	alternatives

• Single	level	directory.
• Two-levels	directory.
• Tree	structure	directory.
• DAG	(directed	acyclic	graph)	structure	directory.
• Generalized	graph	structure	directory.

9



Operating	Systems

Single	level	directory

• A	single	directory	for	all	users.
• Problems	with	file	naming.

– High	probability	of	name	coincidence.

letter.doc list.xls notes. photo.jpg

10



Operating	Systems

Two-levels	directory

• A	directory	per	user.
• Automated	or	manual	path.
• Same	file	name	for	multiple	users	is	valid.
• Efficient	lookup,	but	grouping	problems.

letter.doc listing.xls notes.txt photo.jpg photo2.jpgphoto.jpg

carlosdaniel

11



Operating	Systems

Tree	structure	directory

• Efficient	lookup.
• Relative	and	absolute	naming	->	working	directory.

12

tmp home … usr

carlos daniel … maria bin include

data letter.doc stdio.h



Operating	Systems

Tree	structure	directory

• Absolute	names	contain	the	full	path.
• Relative	names	start	from	working	(or	current)	

directory.
• Directory	change:

cd /spell/mail/prog
cd prog

• Erase	file:	rm <filename>
• Create	directory:	mkdir <dir-name>
• Example:	

cd /spell/mail	
mkdir count
ls /spell/mail/count

• Erase	directory:	rm -r	mail

13



Operating	Systems

Acyclic	graph	structure	directory

• Has	shared	files	and	directories.
• Concept	not	visible	to	Windows	users.

14

tmp home … usr

carlos daniel … maria bin include

data letter.doc stdio.hcab.h io.h



Operating	Systems

Acyclic	graph	directory

• link:	A	file	with	multiple	names	->	link	control
– A	single	file	with	link	count	in	descriptor	(physical	link).
– New	file	type	with	target	name	in	file	content	(symbolic	link).

• Link	removal:
A. Decrement	counter;	if	0	erase	file.
B. Traverse	links	and	erase	all.
C. Erase	only	link	and	leave	the	rest.

• Problem:	close	loops	traversing	the	tree.
• Solutions:

– Allow	only	links	to	files,	but	not	for	directories.
– Loop	detection	algorithm	when	link	is	created.

• UNIX	implementation	limitation:	physical	links	only	within	same	file	
system.

15



Operating	Systems

Directory	structure

• Directory	structure	and	files	stored	in	disks.
• Implementation	alternatives	for	directories:

– Use	special	block	with	directory	information.
– Use	file	whose	content	is	the	directory.

• Information	in	directory:	name,	type,	address,	max	
and	current	length,	access	and	modification	time,	
owner,	…
– In	case	of	using	a	file,	most	of	the	contents	are	file	
metadata.

16



Operating	Systems

Directory	structure:	alternatives

• Directories	for	contiguous	files.
– Assume	all	files	are	stored	with	contiguous	allocation.

• Directories	for	linked	files.
– Assume	all	files	are	stored	with	non-contiguous	allocation	
and	blocks	are	represented	as	a	linked	list.

• Directories	for	indexed	files.
– Assume	all	files	are	stored	with	non-contiguous	allocation	
and	blocks	or	extents	are	represented	through	an	indexed	
structure.

17



Operating	Systems

Directories	for	contiguous	files

• Directory	entry:
– File	attributes	in	directory	entry.
– File	first	block	identifier.
– File	size.

• Example:	ISO-9660	format	for	CD-ROM

Length

Location

Size

Date Name

18



Operating	Systems

Directory	for	linked	files

• Directory	entry:
– File	attributes.
– First	block	number.
– File	size.

• Example:	FAT

Name

Type

Attributes

Time Date

First block number

Size

19



Operating	Systems

Directory	for	indexed	files

• Most	popular	alternative
• Directory	entry:

– Name.
– Metada identifier	for	file	(i-node,	MFT	entry,	…)

i-node id Name

20



Operating	Systems

Directories	for	indexed	files.

• Advantages:
– No	need	to	modify	directory	to	change	file	attributes.
– No	need	to	modify	directory	when	file	changes	its	length.
– An	i-node	may	represent	a	directory	or	a	file.

• Simplified	construction	of	hierarchical	systems.

– Name	length	is	not	prefixed.
– Easy	creation	of	name	synonyms	(links)	for	a	file	name.

21



Operating	Systems

Directory	organization

• Efficiency:	fast	file	lookup.
• Naming:	Convenient	and	easy	for	users.

– Two	users	may	have	the	same	name	for	different	files.
– Same	file	may	have	different	names.
– Variable	length	names.

• Grouping:	
– Logical	grouping	for	files	according	to	properties	(e.g.	c++

programs,	games,	…)
• Structuring:	

– Access	operations	clearly	defined	and	structure	hiding.
• Simplification:	

– Directory	entry	must	be	as	simple	as	possible.

22



Operating	Systems

Hierarchical	naming

• Absolute	name:	Path	from	root	directory	(/	in	
GNU/Linux,	\ in	Windows).	

• Relative	name	Path	from	directory	different	from	
root.
– Example:	(you	are	in	/users/)	daniel/keys
– Relative	to	the	working	directory	(pwd)

• Special	directories:
– .	Working	directory.	Example:	cp /users/daniel/keys	.
– ..	Parent	directory.	Example:	ls ..
– HOME:	Base	directory	for	a	given	user.

23



Operating	Systems

Content

• Directories
• Structure	alternatives
• Name	interpretation
• Directory	handling.

24



Operating	Systems

Name	interpretation	in	UNIX

• Each	directory	is	stored	as	a	file	with	pairs	
<i-node	number,	file-name>.

• Initially	in	memory	directory	for	/.

• How	many	disk	blocks	does	a	directory	need	for	
storage?
– Depends	on	the	number	of	files	in	directory	and	the	
length	of	names.

• Lookup	in	directory	is	sequential.

25



Operating	Systems

Name	interpretation	in	UNIX

• Find	i-node	for	file	/users/daniel/notes.txt.

. 2

.. 2
tmp 25
users 80
bin 37

i-node 2

read

i-node 80

. 80

.. 2
carlos 88
daniel 121

i-node 121

. 121

.. 80
proy 21
notes.tx
t

33

i-node 33

Directory traversing many lead to more than 
one read on disk

26

Daniel 10.0



Operating	Systems

Directory	hierarchy

• Single	directory	tree?
– Per	logical	device	in	Windows	(c:\users\carlos\keys,	j:\joe\tmp,

...)
– System	wide	in	UNIX	(/users/carlos/keys,	/joe/tmp,	…)

• Services	for	building	hierarchy	are	needed:
mount and	umount.
– mount	/dev/hda /users
– umount /users

• Advantages:
– Single	system	image	and	hiding	device	type.

• Drawbacks:
– More	complex	name	translation.
– Problems	with	physical	file	links.

27



Operating	Systems

File	systems	and	partitions

• Volume:	
– Set	of	coherent	metainformation	and	data.

28

Boot Super
block

Bit
Maps i-nodes Data and

directories

Boot 2 FAT
copies

Root
directory

Data and
directories

FAT

UNIX



Operating	Systems

Mounting	partitions

/

/lib /bin /usr

/

/d1 /d2 /d3

/d3/f2/d3/f1

/

/lib /bin /usr

/usr/d1 /usr/d3

/usr/d3/f2/usr/d3/f1

Volumen  raiz
(/dev/hd0)

Volumen  sin montar
(/dev/hd1)

mount   /dev/hd1   /usr

Volumen montado

29

Root volume Un-mounted volume Mounted volume



Operating	Systems

Content

• Directories
• Structure	alternatives
• Name	interpretation
• Directory	handling.

30



Operating	Systems

Example:	directory	handling

• Services	for	handling	files	representing	directories.
• How	does	one	know	if	a	name	corresponds	to	a	file	
or	a	directory?

• Service:
#include <sys/types.h>
#include <sys/stat.h>
int stat(char *name, struct stat *buf);
int fstat(int fd, struct stat *buf);
...
cond = S_ISDIR(buf.st_mode) /* true for directories*/

31



Operating	Systems

Mkdir – Create	directory

• Service:	
#include	<sys/types.h>
#include	<dirent.h>
int	mkdir(const	char	*name,	mode_t	mode);									

• Arguments:	
– name:	directory	name.
– mode:	protection	bits.

• Returns:	
– Zero	or	-1	on	error.

• Description:	
– Creates	a	directory	named	name.
– Owner	UID	=	effective	UID.
– Owner	GID	=	effective	GID.

32



Operating	Systems

Rmdir – Remove	directory

• Service:	
#include	<sys/types.h>
int	rmdir(const	char	*name);									

• Arguments:	
– name:	Directory	name.

• Returns:	
– Zero	or	-1	on	error.

• Decription:	
– Remove	directory	if	it	is	empty.
– Otherwise	directory	is	not	removed.

33



Operating	Systems

Opendir – Open	a	directory

• Service:	
#include	<sys/types.h>
#include	<dirent.h>
DIR	*opendir(char	*	name);

• Arguments:	
– dirname:	Directory	name.

• Returns:	
– A	pointor	to	be	used	with	readdir()	or	closedir().
– NULL on	error.

• Description:
– Opens	a	directory	as	a	sequence	of	entries.
– Places	pointer	in	first	entry.

34



Operating	Systems

Closedir	– Cerrar	un	directorio

• Service:	
#include	<sys/types.h>
#include	<dirent.h>
int	closedir(DIR	*dirp);		

• Arguments:
– dirp:	Pointer	returned	by	opendir().

• Returns:
– Zero	or	-1	if	error.

• Description:
– Closes	association	between	dirp and	directory	entry	sequence.	

35



Operating	Systems

Readdir – Read	directory	entries

• Service:
#include	<sys/types.h>
#include	<dirent.h>
struct	dirent	*readdir(DIR	*dirp);		

• Arguments:	
– dirp:	pointer	returned	by	opendir().

• Returns:	
– A	pointer	to	an	object	of	type	struct	dirent	representing	directory.
– NULL on	error.

• Description:
– Returns	next	entry	in	directory	associated	 to	dirp	and	advances	pointer.
– Structure	is	implementation	 dependent	but	you	can	assume	it	has	a	

member	char*	d_name.

36



Operating	Systems

Rewindir – Position	directory	pointer

• Service:	
#include	<sys/types.h>
#include	<dirent.h>
void	rewindir(DIR	*dirp);

• Arguments:	
– dirp:	pointer	returned	by	opendir().

• Description:
– Sets	directory	position	pointer	to	the	first	entry.

37



Operating	Systems

Link	– Create	a	directory	entry

• Service:	
#include	<unistd.h>
int	link(const	char	*existing,	const	char	*new);
int	symlink(const	char	*existing,	const	char	*new);	

• Arguments:
– existing:	Name	of	existing	file.
– new:	name	of	new	entry	that	will	be	linked	to	existing	file.	

• Returns:
– Zero	or	-1	if	error.

• Description:
– Create	a	new	physical	or	symbolic	link	to	an	existing	file.
– The	OS	does	not	record	which	is	the	original	file	and	which	is	the	new	

one.

38



Operating	Systems

Unlink	– Remove	directory	entry

• Service:	
#include	<sys/types>
int	unlink(char	*name);

• Arguments:
– name:	File	name.

• Returns:	
– Zero	or	-1	if	error.

• Description:
– Removes	entry	to	directory	and	decrements	number	of	links	to	file.
– When	number	of	links	equals	zero	and	no	process	keeps	it	open,	

space	is	freed	and	file	is	no	longer	accessible.

39



Operating	Systems

Chdir – Change	current	directory

• Service:	
int	chdir(char	*name);	 							

• Arguments:	
– name:	directory	name

• Returns:	
– Zero	or	–1	if	error.

• Description:
– Modifies	current	directory	used	to	form	relative	paths.

40



Operating	Systems

Rename	– Change	file	name

• Service:	
#include	<unistd.h>
int	rename(char	*old,	char	*new);									

• Arguments:
– old:	Name	of	existing	file.
– new:	New	file	name.

• Returns:
– Zero	or	-1	if	error.

• Description:
– Change	name	of	file	old.	
– New	name	is	new.

41



Operating	Systems

Getcwd – Get	name	of	current	directory

• Service:	
char	*getcwd(char	*buf,	size_t	size);

• Arguments:	
– buf:	pointer	to	buffer	to	store	name	of	current	directory.
– size:	Length	in	byts	of	buffer.

• Returns:
– Pointer	to	buf or	NULL if	error.

• Description:
– Gets	name	of	current	directory.

42



Operating	Systems

Example:	Directory	listing

#include <sys/types.h>
#include <dirent.h>
#include <stdio.h>

#define MAX_BUF 256

void main(int argc, char **argv) {
DIR *dirp;
struct dirent *dp;
char buf[MAX_BUF];

/* print current directory*/
getcwd(buf, MAX_BUF);
printf(“Current directory: %s\n", buf);

43



Operating	Systems

Example:	Directory	listing

/* Open directory argument */
dirp = opendir(argv[1]);

if (dirp == NULL) {
fprintf(stderr,“Cannot open %s\n", argv[1]);
}
else {
/* read entry by entry*/
while ( (dp = readdir(dirp)) != NULL)
printf("%s\n", dp->d_name);
closedir(dirp);
}
exit(0);
}

44



Operating	Systems

OPERATING SYSTEMS:

Lesson 12:
Directories

45

Jesús Carretero Pérez
David Expósito Singh
José Daniel García Sánchez
Francisco Javier García Blas
Florin Isaila


