
 

 

 

Computer Architecture and Technology Area 

Universidad Carlos III de Madrid 

 

 

 

 

OPERATING SYSTEMS 

 

Lab 1. Programming a command prompt: minishell 

 

BACHELOR'S DEGREE IN COMPUTER SCIENCE AND 

ENGINEERING 



	

Degree	in	Computer	Engineering	
Operating	Systems		

Lab	1-	Minishell	
	

	

1	

	

Table of contents 

1.	 Lab	Statement	.................................................................................................................................	2	

1.1.	 Lab description	......................................................................................................................	2	

1.1.1.	 Provided parser	..................................................................................................................	2	

1.1.2.	 Command	line	parsing.	......................................................................................................	4	

1.1.3.	 Development	......................................................................................................................	6	

a)	 Internal command: globalusage	.........................................................................................	6	

a)	 Internal command: averageusage	.......................................................................................	7	

1.2.	 Support code	..........................................................................................................................	8	

2.	 Assignment	submission	...................................................................................................................	9	

2.1.	 Deadline	and	method	............................................................................................................	9	

2.2.	 Files	to	be	submitted	.............................................................................................................	9	

Appendix	...............................................................................................................................................	10	

3.1.	 Manual	(man	command).	....................................................................................................	10	

4.2   Background and foreground mode	............................................................................................	10	

Bibliography	..........................................................................................................................................	11	

 



	

Degree	in	Computer	Engineering	
Operating	Systems		

Lab	1-	Minishell	
	

	

2	

	

1. Lab	Statement	
This lab allows the student to familiarize with the services for process management that 

are provided by POSIX. Moreover, one of the objectives is to understand how a Shell works 
in UNIX/Linux environments. In summary, a shell permits the user to communicate with the 
kernel of the Operating System using simple or chained commands. 

For the management of processes, you will use the POSIX system calls such as fork, wait, 
exit. For process communication pipe, dup, close and signal systems calls. 

The student must design and implement, in C language and over the UNIX/Linux 
Operating System, a program that acts like a shell. The program must follow strictly the 
specifications and requirements that are inside this document. 

1.1. Lab description 
The minishell uses the standard input (file descriptor = 0), to read the command lines that 

later interprets and execute. It uses the standard ouput (file descriptor = 1) to present the 
result of the commands on the screen. And it uses the standard error (file descriptor = 2) to 
notify the errors that have happened. If an error occurs in any system call, perror is used to 
notify it.  

1.1.1. Provided parser 
Fort the development of this lab a ‘parser’ is given to the student. This parser is capable of 

reading the commands introduced by the user. The student should only work to create a 
command interpreter. The sintaxis used by the parser is the following: 

A space (blank character) is a space or a tab.  
 
A separator is a character with a special meaning (| , < , > , & ),  a new line or the end of 

file (CTRL-D).  
 
A string is any sequence of characters delimited by a space or a separator.  
 
A command is a sequence of strings separated by spaces. The first string is the name of 

the command to be executed. The remaining strings are the arguments of the commands. For 
instance in the command ls –l, ls is the command and –l is the argument. The name of the 
command is to be passed as the argument 0 to the execvp command (man execvp). Each 
command must execute as a immediate child of the minishell spawned by fork command. The 
value of a command is its termination status, returned by exit function from the child and 
received by wait function in the father. If the execution fails, the error must be notified by the 
shell to the user through the standard error.   



	

Degree	in	Computer	Engineering	
Operating	Systems		

Lab	1-	Minishell	
	

	

3	

	

 
A command sequence is a list of commands separated by ‘|’. The standard error of each 

command is connected through an unnamed pipe to the standard input of the following 
command. A shell typically waits for the termination of a sequence of commands before 
requesting the next input line. The value of a sequence is the value returned by the last 
command in the sequence.  

Redirection. The input or the output of a command sequence can be redirected by the 
following syntax added at the end of the sequence: 

 
- < file à Use file as the standard input after opening it for reading (man 2 open). 

- > file à Use file as the standard output. If the file does not exist it is created. If the file 
exists it is truncated.  

- >& file à Use file as the standard output. If the file does not exist it is created. If the 
file exists it is truncated. 

In case of a redirection error, the execution of the line must be suspended and the user should 
be notified by the standard error. 

Background (&). A command or a sequence of commands finishing in ‘&’ must execute 
in background, i.e., the minishell is not blocked waiting for its completion. The minishell 
must execute the command without waiting and print on the screen the identifier of the child 
process in the following format: 

 "[ %d] \n" 

The prompt is a message indicating that the shell is ready to accept commands from the 
user. The default format is: 

"msh>" 

 



	

Degree	in	Computer	Engineering	
Operating	Systems		

Lab	1-	Minishell	
	

	

4	

	

1.1.2. Command	line	parsing. 
In order to obtain the parsed command line introduced by the user you can use the 

function obtain_order: 

int	obtain_order(char	****argvv,	char	**filev,	int	*bg);	

The function returns 0 if the user types Control-D (EOF) and -1 in case of error. If 
successful, the function returns the number of commands + 1. For example: 

- For  ls -l returns 2 

- For ls -l | sort returns 3 

The argument argvv contains the commands entered by the user.  

The argument filev contains the files employed in redirections, if any:  

- filev[0] contains the file name to be used in standard input redirection and NULL if 
there is no such redirection. 

- filev[1] contains the file name to be used in standard output redirection and NULL if 
there is no such redirection. 

- filev[2] contains the file name to be used in standard error redirection and NULL if 
there is no such redirection. 

The argument bg is 1 if the command or command sequence are to be executed in 
background.  

 

Example: If the user enters ls -l | sort < fichero the structure of the arguments of obtain_order 
is shown in the following figure: 

 
Figura 1: Data structure used by the parser. 

In the file msh.c (file that must be completed by the student with the minishell code) 
the function obtain_order is invoked and the next loop executed: 



	

Degree	in	Computer	Engineering	
Operating	Systems		

Lab	1-	Minishell	
	

	

5	

	

for (command_counter = 0; command_counter < num_commands; 
command_counter++)  

{ 

 for (args_counter = 0; (argvv[command_counter][args_counter] != 
NULL); args_counter++) 

 { 

  printf("%s ", argvv[command_counter][args_counter]); 

 } 

 printf("\n"); 

} 

if (filev[0] != NULL) printf("<%s\n", filev[0]); // IN 

if (filev[1] != NULL) printf(">%s\n", filev[1]); // OUT 

if (filev[2] != NULL) printf(">& %s\n", filev[2]); // ERR 

if (bg) printf("&\n"); 

It is recommendable that the students familiarize themselves with the execution of the 
provided code, before starting to modify it. This can be done by entering different commands 
and command sequences and understanding how they are internally handled by the code.   



	

Degree	in	Computer	Engineering	
Operating	Systems		

Lab	1-	Minishell	
	

	

6	

	

1.1.3. Development 
It is recommended to approach the development of the assignment in an incremental way 

(step by step). The different steps are: 

• Execution of simple commands such as ls -l, who, etc. 

• Execution of simple commands in background. 

• Execution of simple commands with redirection (input, output and error). 

• Execution of sequences of commands connected through pipes. The number of 
commands is limited to 3, e.g. ls –l | sort | wc. The implementation of a version that 
accepts an arbitrary number of commands (bigger than 3) will be considered for extra 
marks. 

• Execution of simple commands and sequence of commands with redirections (input, 
output and error), in background (see Appendix to learn about commands n 
foreground and background to see more details about the requirements of commands 
in background).  

• Execution of internal commands. An internal command is a command, which maps 
directly to a system call or a command internally implemented inside the shell. It must 
be implemented and executed inside the minishell (in the parent process). If it finds 
any error, a notification will appear (using standard error).  

In this assignment, two different commands (based on the minishell usage level) have 
to be implemented. The usage level is defined as the number of commands that are 
executed. This value can be obtained from obtain_order function. The minishell has to 
create a file named “usage.log” with the related usage level. Every time the minishell 
is closed (and only at this time) the number of commands executed in the session 
(without counting the internal commands) are written on the file. Using this 
information, you have to implement the following internal commands: 

 

a) Internal command: globalusage 
The code has to read the usage.log file and count the overall number of commands 

executed since the first use of the minishell. Then, the following message has to be 
displayed: 

MINISHELL USAGE: <n> COMMANDS; CURRENT SESSION: <A> COMMANDS 

 Where N is the overall number of commands and A is the current number of 
commands (related to the current minishell session). 



	

Degree	in	Computer	Engineering	
Operating	Systems		

Lab	1-	Minishell	
	

	

7	

	

a) Internal command: averageusage 
The code has to to read the usage.log file and show the average number of 

commands executed since the first minishell execution. In order to do that, the code 
has to read all the file records, to sum them and obtain the average value. Then, this 
value is displayed with the percentage utilization of the current session (that is 
obtained as current_usage/average_usage)*100. This information is displayed in the 
following format: 

AVERAGE USAGE: <M> COMMANDS; CURRENT USAGE: <P>% 

Where M if the average  usage (without counting the current session) and P is the 
the percentage utilization of the current session. For example: 

 

msh> globalusage 

MINISHELL USAGE: 123 COMMANDS; CURRENT SESSION: 13 COMMANDS 

msh> averageusage 

AVERAGE USAGE: 20 COMMANDS; CURRENT USAGE: 50% 

 

  



	

Degree	in	Computer	Engineering	
Operating	Systems		

Lab	1-	Minishell	
	

	

8	

	

1.2. Support code  
To facilitate the realization of this lab you have the file minishell.zip which contains the 

support code. To extract the content you can execute the following: 

Unzip   minishell.zip 

To extract its content, the directory minishell/  is created, where you have to develop the 
lab. Inside that directory the next files are included: 

Makefile 
File for the tool a make. It must NOT be modified. It serves to recompile automatically 

only the source code that is modified. 

y.c 
C source file. It must NOT be modified. It defines basic functions to use the tool lex 

without using the library l. 

scanner.l 
Source file for the lex tool. It must NOT be modified. It allows you to generate 

automatically C code that implements a lexicographic analyzer (scanner) that recognizes the 
token TXT, considering the possible separators (nt j < > & nn). 

parser.y 
Source file for the yacc tool. It must NOT be modified. It generates automatically C code 

that implements a grammatical analyzer (parser) that recognizes correct sentences of the input 
grammar of the minishell. 

msh.c 
C source file which shows how to use the parser. This file must be modified to complete 

the assignment. It is recommended that you study the function obtain_order to understand 
the lab. The current version simply implements an echo of the types lines that are 
syntactically correct. This functionality must be removed and substitutes by the lines of code 
that implement the lab. 

 

NOTE 1: Fort the compilation of the lab code is necessary to have installed the packages 
correspondent to Yacc and Lex. In case of implementing the code outside the lab classrooms 
in personal computers you have to have the lexi and sintactic analyzer Yacc and Lex. In the 
case of Ubntu / Debian systems you can install the packages 'byacc' and 'flex' in the following 
way. 

sudo apt-get install byacc flex 

In case of having another Operating System, you must search for the equivalent package for 
each distribution. 



	

Degree	in	Computer	Engineering	
Operating	Systems		

Lab	1-	Minishell	
	

	

9	

	

2. Assignment	submission	

2.1. Deadline	and	method	
4 weeks are recomme3nded for this lab.  

2.2. Files	to	be	submitted	
The student must submit the code in a zip compressed file with name 

ssoo_p2_AAAAAAAAA_BBBBBBBBB.zip where A…A and B…B are the student 
identification numbers of the group. A maximum of 2 persons is allowed per group, but it can 
be done individually. The file to be submitted must contain: 

• msh.c 
• Makefile 
• parser.y 
• scanner.l 
• y.c 

The report must be submitted in a PDF file. A minimum report must contain: 

• Description of the code detailing the main functions it is composed of. Do not 
include any source code in the report. 

• Tests cases used and the obtained results. All test cases must be accompanied by a 
description with the motivation behind the tests. In this respect, there are three 
clarifications to take into account.  

o Avoid duplicated tests that target the same code paths with equivalent input 
parameters. 

o Passing a single test does guarantee the maximum marks. This section will 
be marked according to the level of test coverage of each program, nor the 
number of tests per program. 

o Compiling without warnings does not guarantee that the program fulfills 
the requirements. 

• Conclusions, describing the main problems found and how they have been solved. 
Additionally, you can include any personal conclusions from the realization of this 
assignment. 

Do not neglect the quality of the report as it is a significant part of the grade of each 
assignment. 

  



	

Degree	in	Computer	Engineering	
Operating	Systems		

Lab	1-	Minishell	
	

	

10	

	

 Appendix	

3.1. Manual	(man	command).	
man is a command that formats and displays the online manual pages of the different 

commands, libraries and functions of the operating system. If a section is specified, man only 
shows information about name in that section. Syntax: 

$ man [section] name 

A man page includes the synopsis, the description, the return values, example usage, bug 
information, etc. about a name. The utilization of man is recommended for the realization of 
all lab assignments. To exit a man page, press q. 

The most common ways of using man are:  

1. man section element: It presents the element page avalaible in the section of the manual. 

2. man –a element: It presents, sequentially, all the element pages avalaible in the manual. Between 
page and page you can decide wether to jump to the next or get out of the pager completely.  

3. man –k keyword It searches the keyword in the brief descriptions and manual pages and present 
the ones that coincide.  

4.2   Background and foreground mode 

When a simple command is executed in background, the pid printed is the one from teh 
process executing that command. 

When a command sequence is executed in background, the pid printed is the one from the 
process that executes the last command of the sequence. 

With the background operation, is possible that the minishell process shows the prompt 
mixed with the output of the process child. This is a correct behavior.. 

After executing a command in foreground, the minishell cannot have zombie processes of 
previous commands executed in background. 



	

Degree	in	Computer	Engineering	
Operating	Systems		

Lab	1-	Minishell	
	

	

11	

	

Bibliography	

• C Programming Language (2nd Edition).Brian W. Kernighan , Dennis M. Ritchie. 

• The UNIX System S.R. Bourne Addison-Wesley, 1983. 

• Advanced UNIX Programming M.J. Rochkind Prentice-Hall, 1985. 

• Operating System Concepts 8th Edition. Abraham Silberschatz, Yale University, 
ISBN: 978-0-470-23399-3. 

• Programming Utilities and Libraries SUN Microsystems, 1990. 

• Unix man pages (man function) 

 


