
 Universidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course	
	

Operating systems Exam
This material is shared with CreativeCommons license.	

1	

	
Exercise	1	(20	points).	Autotest.	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	
C	 D	 B	 A	 C	 B	 C	 B	 B	 C	 D	 C	 D	 D	 D	

	

Exercise	2	(30	points)	
	
Write	a	C	program	that	creates	the	following	processes:	

	 	 Parent	
	 	 	
	 	
	 Child1	------>	Child2	
																								pipe	

Child	1	will	read	data	form	keyboard	and	will	send	it	to	Child2	through	a	pipe.	Child2	displays	the	
received	message	on	the	screen.	

The	process	execution	will	conclude	when	the	Child1	receives	the	string	"exit".

	

Solution

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <errno.h>

#include <string.h>

#define NUM_HIJOS 2 /* número de hijos a crear. */

void hijo1(int fds[2])

{

 int numbytes;

 char buf[4096];

 close(fds[0]);

 numbytes = read(STDIN_FILENO, buf, sizeof(buf));

 while (numbytes > 0) {

 Universidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course	
	

Operating systems Exam
This material is shared with CreativeCommons license.	

2	

 if (write(fds[1], buf, strlen(buf)) == -1) {

 perror("fallo en write");

 exit(EXIT_FAILURE);

 }

 if (strncmp("fin\n", buf, strlen("fin\n")) == 0)

 break;

 numbytes = read(STDIN_FILENO, buf, sizeof(buf));

 }

 if (numbytes == -1) {

 perror("fallo en read");

 exit(EXIT_FAILURE);

 }

 close(fds[1]);

}

void hijo2(int fds[2])

{

 int numbytes;

 char buf[4096];

 close(fds[1]);

 numbytes = read(fds[0], buf, sizeof(buf));

 while (numbytes > 0) {

 if (strncmp("fin\n", buf, strlen("fin\n")) == 0)

 break;

 if (write(STDOUT_FILENO, buf, strlen(buf)) == -1) {

 perror("fallo en write");

 exit(EXIT_FAILURE);

 }

 numbytes = read(fds[0], buf, sizeof(buf));

 }

 if (numbytes == -1) {

 perror("fallo en read");

 exit(EXIT_FAILURE);

 Universidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course	
	

Operating systems Exam
This material is shared with CreativeCommons license.	

3	

 }

 close(fds[0]);

}

int main(void)

{

 int ret, i, fds[2];

 if (pipe(fds) == -1) {

 perror("fallo en pipe");

 exit(EXIT_FAILURE);

 }

 for (i=0; i<NUM_HIJOS; i++) {

 ret = fork();

 if (ret == 0) {

 switch(i) {

 case 0:

 /* tratamiento hijo 1. */

 hijo1(fds);

 exit(EXIT_SUCCESS);

 case 1:

 /* tratamiento hijo 2. */

 hijo2(fds);

 exit(EXIT_SUCCESS);

 }

 } else if (ret > 0) {

 /* tratamiento del padre */

 } else if (ret == -1) {

 perror("fallo en fork");

 exit(EXIT_FAILURE);

 }

 }

 // El padre cierra la tubería antes de esperar y salir

 Universidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course	
	

Operating systems Exam
This material is shared with CreativeCommons license.	

4	

 close(fds[0]);

 close(fds[1]);

 ret = wait(NULL);

 while (ret > 0) {

 ret = wait(NULL);

 }

/* si hay error, ignoramos si no hay más hijos a esperar. */

 if (ret == -1 && errno != ECHILD) {

 perror("fallo en wait");

 exit(EXIT_FAILURE);

 }

}

	

Exercise	3.	(30	points)	
	
Given	a	Producer-Consumer	system	where	the	producer	generatetes	information	and	increments	
a	message	counter.	The	consumer	collects	this	information	and	then	broadcast	it	and	decrements	
the	 message	 counter.	The	 processes	 do	 not	 interact	 with	 each	 other,	 except	 for	 control	
purposes.	There	are	no	mechanisms	to	store	the	produced	information,	thus	it	should	be	ensured	
strict	 alternation	 in	 the	 system.	That	 is,	when	a	producer	 generatetes	 information,	 it	must	wait	
until	it	has	been	collected	by	the	Consumer	before	producing	new	information.	
	
The	processes	are	coded	according	to	the	following	pseudocode:	
	

procedure	Producer		is
while	(true)	do

generatete_and_store;
increase;

end	while;
end	procedure;

procedure	Consumer		is
while	(true)	do

get_and_send;
decrease;

end	while;
end	procedure;

	
Increase	and	decrease	operations	are	atomic	and	operate	on	the	same	variable.		
	
	 	

 Universidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course	
	

Operating systems Exam
This material is shared with CreativeCommons license.	

5	

Answer	the	following	questions:	

1. Modify	 the	 provided	 code	 to	 ensure	 strict	 alternation	 between	 producer	 and	
consumer	processes.	You	can	use	semaphores	and	the	generic	wait	and	signal	instructions.	

2. In	a	second	step,	you	have	to	modify	the	solutions	to	allow	the	producer	to	store	
messages	and	wait	with	them	until	the	Consumer	collects	them.	If	there	are	producer	and	
consumer	 processes	 waiting	 for	 being	 executed,	 the	 system	 must	 keep	 the	 strict	
alternation	between	 them.	Otherwise,	 the	producer	can	pass	 its	 turn	to	another	Producer	
process.	Write	the	code	implementation	using	shared	integer	variables	and	semaphores.		

Solution
SOLUCION:

1.

semaphore	put	:=1;	
semaphore	get:=0;	
signal(put);	
	
procedure	Producer	is	
				while	(true)	do	
							generate_&_store;	
							put.wait;	
							increment;	
						get.signal;	
			end	while;	
end	procedure;	
	

procedure	Consumer	is	
				while	(true)	do	
							get_&_send;	
							get.wait;	
							decrement;	
							put.signal;	
				end	while;	
end	procedure;
	

	
	 	

 Universidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course	
	

Operating systems Exam
This material is shared with CreativeCommons license.	

6	

	
	
2.	
semaphore:	put	:=0;	
semaphore:	get:=0;	
semaphore:	mutex:=1;	
integer:	producers:=0;	
integer:	consumers:=0;	

procedure	Producer	is	
				while	(true)	do	
								generate_&_store;	
							mutex.wait;	
							producers:=producers	+	1;	
							if	(producers=1	and		consumers=0)	then	
									put.signal;	
							end	if	
						mutex.signal;	
						put.wait;	
						increment;	
						mutex.wait;	
						if	(consumers)	then	
									get.signal;	
						else		
										if	(producers)	then	
													put.signal;	
										else		
														get.signal;	
										end	if;	
						end	if;	
						producers:=producers	-	1;	
						mutex.signal;	
				end	while;	
end	procedure;	

procedure	Consumer	is	
				while	(true)	do	
							get_&_send;	
							mutex.wait;	
							consumers:=consumers+1;	
							mutex.signal;	
							get.wait;	
							decrement;	
							mutex.wait;	
							consumers:=consumers-1;	
							mutex.signal;	
			end	while;	
end	procedure;

	
	

	

	

Exercise	4.	(20	points)	

Given	the	following	small-size	linked	file	system	based	on	the	File-Allocation	Table	(FAT):	

	
• Block	size:	1KB.	

• The	first	10	blocks	(0	through	9)		are	reserved	for	filesystem,	of	which	3	are	used	to	
store	filesystem	information	(SuperBlock)	and	for	the	filesystem	boot	(Boot).	The	
remaining	7	blocks	are	used	to	store	information	of	directories.	

 Universidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course	
	

Operating systems Exam
This material is shared with CreativeCommons license.	

7	

• The	information	of	each	directory	occupies	a	block.	Each	entry	has	the	following	
fields:	filename	extension	with	64	bytes;	metadata	(user	name,	permissions,	etc.)	with	63	
bytes;	and	starting	block	with	1	byte.	A	directory	does	not	contain	directories.	

• Initially,	the	file	system	has	two	directories	named	(/documents	and	/	bin)	whose	
content	is	shown	below:	

Directory:	/documents	

Config.cf Doc.txt
Metadata Metadata
18 11

Directory:	/bin	

ls ps cd gcc
Metadata Metadata Metadata Metadata
38 25 17 13
	

• The	FAT	table	only	stores	information	related	to	the	file	data.	The	value	-1	is	used	to	encode	
the	end	of	the	file	and	0	to	indicate	that	the	block	is	free.		Below,	the	contents	of	the	entire	file	
system		FAT	table	are	shown.	The	upper	index	is	the	block	number.	The	free	block	allocation	
policy	for	a	new	file	is	to	first	allocate	the	free	blocks	with	the	lowest	identifier.	

	
FAT	TABLE	

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
-1 15 0 -1 0 29 0 20 -1 0 33 0 0 37 0

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
23 0 0 0 10 0 -1 0 -1 0 31 0 35 -1 0

	

Considering	this	file	system,	answer	the	following	questions.	Justify	your	answer.			

1. What	is	the	total	filesystem	size?	What	is	the	filesystem	effective	capacity	(the	space	in	
bytes	that	can	be	used	to	store	file	data)?	

2. What	is	the	maximum	number	of	directories	that	the	filesystem	supports?	How	many	files	
can	be	in	each	directory?	

3. What	are	the	files	stored	in	the	/bin	directory?	Briefly	describes	the	functionality	of	each	
one	of	them.	

4. Explain	what	blocks	are	uses	to	store	information	for	the	file	/document/Doc.txt.	For	the	
same	file:	In	which	block	is	the	file	data	byte	2050	stored?	

 Universidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course	
	

Operating systems Exam
This material is shared with CreativeCommons license.	

8	

5. Show	the	changes	in	the	file	system	that	would	involve	creating	a	new	file,	named	
“test.txt”,		with	a	size	of	3	blocks		in	the	/documents	directory.	

6. An	important	factor	to	improve	the	filesystem	performance	is	to	minimize	the	number	of	
accesses	to	the	filesystem	data	structures.	This	allows	to	reduce	time	while	locating	a	particular	
data	block.	What	are	the	drawbacks	of	this	type	of	filesystem	when	accessing	large	files	randomly	
(that	is,	not	sequentially)?	Do	index-based	files	systems	(such	as	UNIX-based	i-nodes)	have	the	
same	drawbacks?	

	
SOLUTION
	
1. The	FAT	table	contains	the	information	of	the	file	data	blocks.	In	overall,	there	are	30	

blocks	thus	the	effective	capacity	is	30KB.	There	are	10	more	blocks	used	by	the	
filesystem,	which	represents	a	total	size	of	40KB.	

2. Given	that	each	directory	occupies	one	block	and	3	out	of	10	blocks	are	reserved	for	the	
file	system,	the	maximum	number	of	directories	will	be	7.	Each	directory	has	a	size	of	1KB		
and	each	entry	occupies	(64+63+1=128B).	Consequently	the	maximum	number	of	files	
(entries	in	the	block)	will	be	1KB/128B=8	files.	.	

3. ls	shows	the	directory	contents;	ps	displays	the	existing	running	processes;	cd	allows	to	
change	the	directory	and	gcc	is	the	C	compiler.	

4. According	the	FAT	table,	the	starting	block	is	the	number	11;	this	one	is	linked	with	15,	
which	is	linked	with	29	which	is	linked	with	10	(the	last	block).	So,	the	file	occupies	the	
following	sequence	of	4	blocks	11	->	15	->	29	->	10.	The	byte	2050	belongs	to	the	third	
block	which	is	no.	29.	

	
5. 	

Directory:	/documents	
Config.cf	 Doc.txt	 text.txt	 	 	 	 	 	 	 	
Metadata	 Metadata	 Metadata	 	 	 	 	 	 	 	
18	 11	 12	 	 	 	 	 	 	 	
	

TABLA	FAT	
10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	
-1	 15	 14	 -1	 16	 29	 -1	 20	 -1	 0	 33	 0	 0	 37	 0	

	
25	 26	 27	 28	 29	 30	 31	 32	 33	 34	 35	 36	 37	 38	 39	
23	 0	 0	 0	 10	 0	 -1	 0	 -1	 0	 31	 0	 35	 -1	 0	
	
6. One	of	the	main	problemas	with	linked	files	is	that	for	a	given	Access	it	is	necessary	to	

traverse	the	block	sequence	from	the	starting	block.	This	produces	a	larger	access	time	
when	we	Access	to	non-consecutive	blocks.	The	index-based	filesystems	are	more	efficient	
(and	fast)	given	that	the	linked	list	doesn’t	exists.			

