
Universidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course	

Operating systems Exam
This material is shared with CreativeCommons license. 1

RULES:	

• The	final	grades	and	the	review	dates	will	be	announced	in	Aula	Global. The	exam	duration	is	
two	hours	and	a	half.		Books	and	notes	are	not	allowed.	A	valid	ID	document	will	be	necessary	
to	submit	the	exam.	

NAME:																																																																								GROUP:	

Exercise	2	(20	points).	

Answer	the	following	questions.	Justify	each	answer.		

a) Why	it	is	not	possible	to	perform	a	system	call	using	a	function	similar	to	CALL?	

b) Consider	the	following	program	called	prog1.c		

	
//	prog1.c	
	
#include	<stdio.h>	
#include	<unistd.h>	
Int	main()	
{	
printf("one\n");	
write(STDOUT_FILENO,	"two\n",	4);	
return	0;	
}	

	
This	program	produces	the	following	output	when	it	is	executed	in	command	prompt:		

	
$./prog1	
one	
two	
$	

	
However,	when	the	program’s	output	is	send	to	the	cat	command	by	means	of	a	pipe,	
the	output	is	the	following	one:	

	
$./prog1	|	cat	
two	
one	

	
Explain	this	behaviour.		

	

c) An user executes in a bash terminal the command cat < main.c | grep
main
In the following table show each one of the following events:
1. System calls related with the processes: fork,	exec,	exit,	kill,	wait/pid	
2. System calls related to the file	descriptors:	open,	close,	pipe,	dup,	dup2	

	

Universidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course	

Operating systems Exam
This material is shared with CreativeCommons license. 2

The	different	rows	can	be	used	to	represent	the	event	synchronization.	For	instance,	if	
an	event	n	happens	after	event	m,	then	n	has	to	be	placed	in	a	row	after	event	m.	
	

Table	for	Exercise	2.c	
	
The	input	is	shown	in	
bold	font	and	the	
output	is	shown	in	
italic	font.		

	

Shell	process	 Child1	process	 Child2	process	

$	cat	<	main.c	|	
grep	main	
int	main()	{	
$	

	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	
	
	
	 	

Universidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course	

Operating systems Exam
This material is shared with CreativeCommons license. 3

Exercise	3	(30	points).	

A	new	Company	offers	support	to	investors	by	means	of	an	automatic	learning	algorithm	
based	on	a	decision	tree.	These	tree	is	used	by	all	the	clients	and	it	is	constantly	updated	with	
new	information.		
	
This	decision	tree	is	implemented	with	two	routines	that	are	not	thread-safe.	That	is,	they	are	
not	designed	to	be	used	in	a	concurrent	fashion.	The	names	of	the	routines	are	
eval_investment		(to	evaluate	a	given	investment)	y	update_tree	(to	provide	new	information	
to	the	decission	tree).	

assessment_t* eval_investment(investment_t* input);

void update_tree(features_list* new_features);

It	is	necessary	to	provide	concurrent	access	to	the	eval_investment	routine	and	guarantee	that	
when	the	decision	tree	is	being	modified	(update_tree)	by	one	thread,	no	other	thread	can	
execute	neither	eval_investment	nor	update_tree.	
	
Complete	the	following	tasks:	

	
a) Discuss	the	related	problems	of		the	following	solution	to	the	previous	requirements.	

assessment_t* eval_investment_safe(investment_t* input) {
 pthread_mutex_lock(&m);
 assessment_t* result = eval_investment(input);
 pthread_mutex_unlock(&m);
 return result;
}

void update_tree_safe(features_list* values) {
 pthread_mutex_lock(&m);
 update_tree(values);
 pthread_mutex_unlock(&m);
}

b) Implement	an	alternative	solution	for	multiple	readers/writers	using	condition	variables.	

The	solution	has	to	fulfil	the	previous	requirements.		
c) Modify	the	previous	solution	(b)	to	introduce	priorities	in	the	writers.	That	is,	if	a	thread	is	

executing	update_tree_safe,		then	the	new	incoming	threads	wait	in	order	to	perform	the	
update	operation.		
	

NOTES:	
- Include	the	declaration	of	the	shared	variables,	condition	variables	and	mutexes	used	in	the	

solution.	
- It	is	not	necessary	to	write	the	main()	function.	It	is	only	necessary	to	write	the	

eval_investment_safe()	and	update_tree_safe()	functions.		
	

	 	

Universidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course	

Operating systems Exam
This material is shared with CreativeCommons license. 4

	

Exercise	4	(20	puntos).	
Given	a	standard	Linux	(ext3)	filesystem	where	the	inodes	have	10	direct	pointers,	one	single	
indirect	pointer,	one	double	indirect	pointer	and	one	triple	indirect	pointer.	

The	disk	size	is	300MB,	and	the	96%	space	is	available	for	data	block.	The	rest	of	the	disk	space	
is	used	for	the	resto	of	the	filesystem	structures.	The	block	size	if	2KB	and	the	block	addresses	
are	32	bits.		

Answer	the	following	questions:	

a- What	is	the	maximum	size	(in	KByters)	that	a	file	can	use	to	store	data	without	using	
the	single	double	pointer.	

b- What	is	the	maximum	file	size	(space	used	to	store	data)	
c- Given	a	filesystem	with	the	following	information:		

	
i-node	table	

I-node	number	 1	 2	 3	 4	 5	 6	 7	

Type	 Directory	 Directory	 File	 	 	 	 	

Physical	link	counter	 3	 2	 1	 	 	 	 	

Data	block	address	 11	 12	 13	 	 	 	 	

…….	 	 	 	 	 	 	 	

			 	

Data	block	

Block	
number	

11	 12	 13	 14	 15	 16	 17	 18	

	

	

Content	

.										1	 .										2	 File		

data	

	 	 	 	 	

..									1	 ..									1	 	 	 	 	 	

d									2	 f1								3	 	 	 	 	 	

	 	 	 	 	 	 	

	

Complete	the	following	tables	with	the	results	of	the	execution	of	the	following	operations:	

ln	-s		/d	/d1		 	 	 Symbolic	link	from	directory		/d1	to	directory	d	

cp	/d/f1		/f2														 	 File	copy	from	/d/f1	to		/f2	

Universidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course	

Operating systems Exam
This material is shared with CreativeCommons license. 5

mkdir		/d/d2	 	 	 Directory	creation	in	/d/d2	

Tables	for	exercise	4.c	

	
i-node	table	

I-node	number	 1	 2	 3	 4	 5	 6	 7	

Type	 Directory	 Directory	 File	 	 	 	 	

Physical	link	counter	 3	 2	 1	 	 	 	 	

Data	block	address	 11	 12	 13	 	 	 	 	

…….	 	 	 	 	 	 	 	

			 	

Data	block	

Block	
number	

11	 12	 13	 14	 15	 16	 17	 18	

	

	

Content	

.										1	 .										2	 File		

data	

	 	 	 	 	

..									1	 ..									1	 	 	 	 	 	

d									2	 f1								3	 	 	 	 	 	

	 	 	 	 	 	 	

	

