
OpeUniversidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course

Operating systems Exam
This material is shared with CreativeCommons
license. 1

	RULES:	

• The	final	grades	and	the	review	dates	will	be	announced	in	Aula	Global. The	exam	duration	is	
two	hours	and	a	half.		Books	and	notes	are	not	allowed.	A	valid	ID	document	will	be	necessary	
to	submit	the	exam.	

NAME:																																																																								GROUP:	

Exercise	1	(20	points).	

Always		

It	uses	different	types	of	pointer	inside	the	iNode	(Direct	pointer,	single	indirect	pointer	,double	
indirect	pointer,	tripple	indirect	pointer)		

	Every	Time.		

	Provides	hardware	support	to	the	OS	memory	management		

	Comparing	 by	 hardware	 units	 every	 address	 generated	 in	 user	 mode	 with	 base	 and	 limit	
registers.		

	Paging		

All	of	the	above.	

lock(m)	tries	to	block	the	mutex.	If	it	is	already	locked	,	lock(m)	unlocks	it	

	All	of	the	above.	

A	and	B	are	correct	

To	improve	performance	by	sending	some	processes	to	swap	area	

Register	

Executes	an	especific	service.	

Is	changed	only	at	the	startup	of	the	system	

switches	the	execution	of	the	processes	so	fast	that	the	user	believes	to	be	interacting	with	them	
as	if	it	was	in	parallel.	

Exercise	2	(20	points).	

Answer	the	following	questions.	Justify	each	answer.		

a) Why	it	is	not	possible	to	perform	a	system	call	using	a	function	similar	to	CALL?	

SOLUTION	

You	cannot	use	the	operating	system	with	a	CALL	function	because	you	have	to	go	to	

OpeUniversidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course

Operating systems Exam
This material is shared with CreativeCommons
license. 2

supervisor	mode.The	proper	way	to	do	this	is	through	a	system	call,	which	is	responsible	
for	causing	a	TRAP	having	first	prepared	the	necessary	parameters.	In	figure	making	a	
system	call	is	as	follows:	

	

	

b) Consider	the	following	program	called	prog1.c		

	
//	prog1.c	
	
#include	<stdio.h>	
#include	<unistd.h>	
Int	main()	
{	
printf("one\n");	
write(STDOUT_FILENO,	"two\n",	4);	
return	0;	
}	

	
This	program	produces	the	following	output	when	it	is	executed	in	command	prompt:		

	
$./prog1	
one	
two	
$	

	

PROCESO 1

PROCESO N

PROCESO 2

TABLA

SERVICIO

MEMORIA

MODO
USUARIO

MODO
NÚCLEO

SISTEMA OPERATIVO

1

2
3

4

PROCESO
DE USUARIO

PROCESO DE USUARIO HW SISTEMA OPERATIVO

RUTINA DE
BIBLIOTECA TRAP TRATAMIENT0

DE INTERRUP.
RUTINA DE
SERVICIO

OpeUniversidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course

Operating systems Exam
This material is shared with CreativeCommons
license. 3

However,	when	the	program’s	output	is	send	to	the	cat	command	by	means	of	a	pipe,	
the	output	is	the	following	one:	

	
$./prog1	|	cat	
two	
one	

	
Explain	this	behaviour.		

	
SOLUTION	

printf	()	uses	an	input	buffer	/	stdout,	while	write	()	is	a	system	call	that	immediately	invokes	
the	kernel	to	generate	output	data.	

The	stdio	buffer	is	emptied	when	there	is	a	line	break	"\	n"	but	only	when	the	buffer	is	
connected	to	the	standard	output	(screen	or	terminal),	if	stdout	is	connected	through	a	pipe	
as	in	the	second	run	emptying	buffer	delayed	until	completion	of	the	program.	

c) An user executes in a bash terminal the command cat < main.c | grep
main
In the following table show each one of the following events:
1. System calls related with the processes: fork,	exec,	exit,	kill,	wait/pid	
2. System calls related to the file	descriptors:	open,	close,	pipe,	dup,	dup2	

	
The	different	rows	can	be	used	to	represent	the	event	synchronization.	For	instance,	if	
an	event	n	happens	after	event	m,	then	n	has	to	be	placed	in	a	row	after	event	m.	
	

Table	for	Exercise	2.c	
	
The	input	is	shown	in	
bold	font	and	the	
output	is	shown	in	
italic	font.		

	

Shell	process	 Child1	process	 Child2	process	

$	cat	<	main.c	|	
grep	main	
int	main()	{	
$	

	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

OpeUniversidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course

Operating systems Exam
This material is shared with CreativeCommons
license. 4

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	

The	input	is	shown	in	
bold	font	and	the	
output	is	shown	in	italic	
font.		

Shell	process Child1	process Child2	process

$ cat < main.c |
grep main
int main() {
$

pipe([RD, WR])

 fork()

 close(WR) close(RD)

 fork() dup2(WR,1)

 close(RD) close(WR) dup2(RD, 0)

 open(“main.c”)
= FD

close(RD)

 dup2(FD, 0) exec(“grep”)

 close(FD) exit()

 exec(“cat”)

OpeUniversidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course

Operating systems Exam
This material is shared with CreativeCommons
license. 5

 exit()

 waitpid(-1)

 waitpid(-1)

Dup2	cannot	be	executed	in	the	shell	process	that	affect	descriptors	stdin	/	stdout	files.	
Note:	Close	calls	are	only	displayed	in	response	to	complete	the	scheme	but	could	be	accepted	
as	valid	response	without	them.	
	
	 	

OpeUniversidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course

Operating systems Exam
This material is shared with CreativeCommons
license. 6

Exercise	3	(30	points).	

A	new	Company	offers	support	to	investors	by	means	of	an	automatic	learning	algorithm	
based	on	a	decision	tree.	These	tree	is	used	by	all	the	clients	and	it	is	constantly	updated	with	
new	information.		
	
This	decision	tree	is	implemented	with	two	routines	that	are	not	thread-safe.	That	is,	they	are	
not	designed	to	be	used	in	a	concurrent	fashion.	The	names	of	the	routines	are	
eval_investment		(to	evaluate	a	given	investment)	y	update_tree	(to	provide	new	information	
to	the	decission	tree).	

assessment_t* eval_investment(investment_t* input);

void update_tree(features_list* new_features);

It	is	necessary	to	provide	concurrent	access	to	the	eval_investment	routine	and	guarantee	that	
when	the	decision	tree	is	being	modified	(update_tree)	by	one	thread,	no	other	thread	can	
execute	neither	eval_investment	nor	update_tree.	
	
Complete	the	following	tasks:	

	
a) Discuss	the	related	problems	of		the	following	solution	to	the	previous	requirements.	

assessment_t* eval_investment_safe(investment_t* input) {
 pthread_mutex_lock(&m);
 assessment_t* result = eval_investment(input);
 pthread_mutex_unlock(&m);
 return result;
}

void update_tree_safe(features_list* values) {
 pthread_mutex_lock(&m);
 update_tree(values);
 pthread_mutex_unlock(&m);
}

b) Implement	an	alternative	solution	for	multiple	readers/writers	using	condition	variables.	

The	solution	has	to	fulfil	the	previous	requirements.		
c) Modify	the	previous	solution	(b)	to	introduce	priorities	in	the	writers.	That	is,	if	a	thread	is	

executing	update_tree_safe,		then	the	new	incoming	threads	wait	in	order	to	perform	the	
update	operation.		
	

NOTES:	
- Include	the	declaration	of	the	shared	variables,	condition	variables	and	mutexes	used	in	the	

solution.	
- It	is	not	necessary	to	write	the	main()	function.	It	is	only	necessary	to	write	the	

eval_investment_safe()	and	update_tree_safe()	functions.		
	 	

OpeUniversidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course

Operating systems Exam
This material is shared with CreativeCommons
license. 7

SOLUTION	

a)	The	proposed	solution	avoids	race	conditions	on	access	to	the	tree	but	has	a	problem	in	that	
only	one	thread	can	access	the	critical	section,	even	when	we	only	read.	This	involves	a	
significant	performance	penalty.	

	b)	A	possible	solution	could	be	next.	It	is	important	to	use	pthread_cond_broadcast	to	allow	
all	waiting	threads	eligible	for	critical	section,	especially	if	you	are	reading	threads:	

pthread_mutex_t m;  
pthread_cond_t turn;
int clients = 0;  
int updating = 0;  

assessment_t* eval_investment_safe(investment_t* input) {

assessment_t* result;

pthread_mutex_lock(&m);
while(updating) {
 pthread_cond_wait(&turn, &m);
clients++;
pthread_mutex_unlock(&m);

result = eval_investment(input);

pthread_mutex_lock(&m);
clients--;
pthread_cond_broadcast(&turn);
pthread_mutex_unlock(&m);

return result;
}

void update_tree_safe(features_list* new_values) {
pthread_mutex_lock(&m);
while (clients || updating)

pthread_cond_wait(&turn, &m);
updating++;
pthread_mutex_unlock(&m);

update_tree(features_list);

pthread_mutex_lock(&m);
updating--;
pthread_cond_broadcast(&turn);
pthread_mutex_unlock(&m);
}

OpeUniversidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course

Operating systems Exam
This material is shared with CreativeCommons
license. 8

C) In this case, another possible solution is to take a simple count of how
many writers are active at all times and check whether readers is nonzero or

not:

 
pthread_mutex_t m;  
pthread_cond_t turn;
int clients = 0;  
int updating = 0;  
int writers = 0;

assessment_t* eval_investment_safe(investment_t* input) {

assessment_t* result;

pthread_mutex_lock(&m);
if (writers)

pthread_cond_wait(&turn, &m);
while(updating) {
 pthread_cond_wait(&turn, &m);
clients++;
pthread_mutex_unlock(&m);

result = eval_investment(input);

pthread_mutex_lock(&m);
clients--;
pthread_cond_broadcast(&turn);
pthread_mutex_unlock(&m);

return result;
}

void update_tree_safe(features_list* new_values) {
pthread_mutex_lock(&m);
writers++
while (clients || updating)

pthread_cond_wait(&turn, &m);
updating++;
pthread_mutex_unlock(&m);

update_tree(features_list);

pthread_mutex_lock(&m);
updating--;
writers++;
pthread_cond_broadcast(&turn);
pthread_mutex_unlock(&m);
}
	 	

OpeUniversidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course

Operating systems Exam
This material is shared with CreativeCommons
license. 9

	

Exercise	4	(20	puntos).	
Given	a	standard	Linux	(ext3)	filesystem	where	the	inodes	have	10	direct	pointers,	one	single	
indirect	pointer,	one	double	indirect	pointer	and	one	triple	indirect	pointer.	

The	disk	size	is	300MB,	and	the	96%	space	is	available	for	data	block.	The	rest	of	the	disk	space	
is	used	for	the	resto	of	the	filesystem	structures.	The	block	size	if	2KB	and	the	block	addresses	
are	32	bits.		

Answer	the	following	questions:	

a- What	is	the	maximum	size	(in	KByters)	that	a	file	can	use	to	store	data	without	using	
the	single	double	pointer.	

b- What	is	the	maximum	file	size	(space	used	to	store	data)	
c- Given	a	filesystem	with	the	following	information:		

	
i-node	table	

I-node	number	 1	 2	 3	 4	 5	 6	 7	

Type	 Directory	 Directory	 File	 	 	 	 	

Physical	link	counter	 3	 2	 1	 	 	 	 	

Data	block	address	 11	 12	 13	 	 	 	 	

…….	 	 	 	 	 	 	 	

			 	

Data	block	

Block	
number	

11	 12	 13	 14	 15	 16	 17	 18	

	

	

Content	

.										1	 .										2	 File		

data	

	 	 	 	 	

..									1	 ..									1	 	 	 	 	 	

d									2	 f1								3	 	 	 	 	 	

	 	 	 	 	 	 	

	

Complete	the	following	tables	with	the	results	of	the	execution	of	the	following	operations:	

ln	-s		/d	/d1		 	 	 Symbolic	link	from	directory		/d1	to	directory	d	

OpeUniversidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course

Operating systems Exam
This material is shared with CreativeCommons
license. 10

cp	/d/f1		/f2														 	 File	copy	from	/d/f1	to		/f2	

mkdir		/d/d2	 	 	 Directory	creation	in	/d/d2	

Tables	for	exercise	4.c	

	
i-node	table	

I-node	number	 1	 2	 3	 4	 5	 6	 7	

Type	 Directory	 Directory	 File	 	 	 	 	

Physical	link	counter	 3	 2	 1	 	 	 	 	

Data	block	address	 11	 12	 13	 	 	 	 	

…….	 	 	 	 	 	 	 	

			 	

Data	block	

Block	
number	

11	 12	 13	 14	 15	 16	 17	 18	

	

	

Content	

.										1	 .										2	 File		

data	

	 	 	 	 	

..									1	 ..									1	 	 	 	 	 	

d									2	 f1								3	 	 	 	 	 	

	 	 	 	 	 	 	

	

SOLUTION	

A)	

With	2KBytes	a-	blocks	and	addresses	of	32	bits	=	4Bytes	fit	2KB	/	4B	=	512	addresses	per	block.	

If	we	cannot	use	double	indirect	pointers,	thus	we	can	only	use	10	direct	blocks	plus	512	points	
would	give	us	the	targeted	block	for	the	simple	indirect	pointer	block	so	the	maximum	file	size	
would	be	512	+	10	=	522	blocks	=	1044Kbytes.	

B)	

To	calculate	the	maximum	size	count	the	number	of	data	blocks	with	addresses	

10	direct	pointers	point	to	10	blocks	of	the	file.	

OpeUniversidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course

Operating systems Exam
This material is shared with CreativeCommons
license. 11

The	simple	indirect	pointer	will	point	to	a	block	of	addresses	that	point	to	512	file	data	blocks.	
That	is	512	=	29	blocks	

Double	indirect	pointer	point	to	512	blocks	each	of	which	will	address	file	512	blocks.	That	is	
512	*	512	=	218	blocks	

Triple	indirect	pointer	point	to	512	blocks	each	of	which	point	to	512	blocks	each	of	which	will	
address	file	512	blocks.	That	is	512	*	512	*	512	=	227	blocks	

Total	522	blocks	+	218	+	227	blocks,	which,	as	each	block	is	2KB,	gives	us	something	more	than	
228	KBytes	

As	300MB	(=	300	*	210KB)	is	less	than	228	KB	size	is	not	restricted	by	pointers	to	blocks	but	
the	disk	size.	Available	disk	300	*	0.96	=	288MBytes	for	data	blocks,	that	is	144M	=	147456K	
blocks.	

As	the	file	must	be	in	a	directory	and	this	will	take	at	least	one	block	1	subtract	the	number	of	
total	blocks:	147456K	Block-1	=	147455K	blocks	

To	reach	that	size	need:	

10	direct	pointers	

1	single	indirect	pointer	that	points	to	a	block	of	addresses	that	must	be	subtracted	from	the	
maximum	size:	147455K	blocks-1	=147454K	blocks	

To	reach	the	remaining	147454	blocks	(blocks	-10	-	512	=	146,932	remaining	blocks	to	address)	
will	use	the	double	indirect	pointer	that	points	to	an	address	block	(subtract	1:	147454	blocks-
1	=	147453	maximum	size	blocks)	point	 to:	146,931	blocks	/	512	=	287	address	blocks	also	
subtract:	147453	blocks-	287	address	blocks	=	147166	actual	data	blocks.	Total	147166	*	=	2KB	
per	block	294332KB	

	

Nº	Inodo	 1	 2	 3	 4	 5	 6	

Tipo	 Directorio	 Directorio	 Fichero	 Enlace	
Simbólico	

Fichero	 Directo
rio	

Contador	
Enlaces	Fis.	

3		 2		3	 1	 1	 1	 2	

Direcc.	 Bloque	
Datos	

11	 12	 13	 14	 15	 16	

…….	 	 	 	 	 	 	

	

OpeUniversidad	Carlos	III	de	Madrid	
Computer	Science	and	Engineering	Department	

Operating	Systems	Course

Operating systems Exam
This material is shared with CreativeCommons
license. 12

			 Bloques	de	datos:	

Nº	Bloque	 11	 12	 13	 14	 15	 16	 …..	

	

	

Contenido	

.										1	 .										2	 Datos	
del	
fichero	

/d	 Datos	
del	
fichero	
f2	

.										6	 	

..									1	 ..									1	 	 	 ..									2	 	

d									2	 f1								3	 	 	 	 	

d1							4	 d2							6	 	 	 	 	

f2								5	 	 	 	 	 	

	
	

	

