
Introduction to multiprocessors

J. Daniel García Sánchez (coordinator)
David Expósito Singh
Javier García Blas

Computer Architecture
ARCOS Group

Computer Science and Engineering Department
University Carlos III of Madrid

1. Module structure

This module is structured in four lessons:

Symmetric shared memory. It introduces the concept of multiprocessor architecture and the
design alternatives in shared memory machines. It presents the problem of cache coherence and
the available alternatives for solving it. Besides, it o�ers some details on snooping protocols.

Memory consistency models. It introduces the concept of memory consistency and the se-
quential consistency model. It also presents more relaxed consistency models, including the re-
lease/acquire model. Besides, it o�ers some details on the memory model from Intel processors.

Synchronization. It presents the synchronization problem in shared memory machines. It also
presents the di�erent alternatives for hardware primitives that can be used to implement syn-
chronization. It introduces the concepts of lock and barrier as well as their design alternatives.

Distributed shared memory. It o�ers additional details on the concept of distributed shared
memory and presents the directory based protocols.

2. Symmetric shared memory

This lesso has the following general structure:

1. Introduction to multiprocessor architecture.

2. Centralized shared memory architectures.

3. Cache coherence alternatives.

4. Snooping protocols.

5. Performance in SMPs.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
1 Computer Architecture



2.1. Introduction to multiprocessor architectures

In recent years, multiple reasons have contributed to increase the interest in multiprocessor machi-
nes. On one hand, the diminishing bene�ts from instruction level parallelism and the increase in energy
consumption make it necessary alternative mechanisms to improve computers performance. Additio-
nally, new market segments, as cloud based services and software as a service, have placed more and
more demand on high performance servers. Finally, the increase of data intensive applications require
the ability to process greater data volume.

To be able to exploit the parallelism o�ered by architectures with several processors it is necessary
to exploit thread level parallelism. This assumes the existence of multiple program counters. While
this programming model has been widely used in the scienti�c computing domain, its use outside that
domain is something relatively recent.

A multiprocessor is a computer consisting of several highly coupled processors with two important
characteristics. On one hand, the processors coordination and use is under a single operating system.
On the other hand, all memory is shared, and consequently, there is a single global address space
shared by all processors.

To make use of a multiprocessor programming models most frequently used are parallel processing,
request processing, and multiprogramming. From a physical point of view, alternatives go from CMP
(chip multi-processors or multi-core) to the use of multiple chips or the use of multicomputers.

To be able to adequately exploit a multiprocessor with n processors it is necessary to be able to
decompose the program to be executed into n threads of execution. Those execution threads can be
identi�ed explicitly by the programmer, be created by the operating system from received requests, or
be generated by the compiler. It is important to remark that, in any case, the number of instructions
to be executed by every thread must be su�ciently high to compensate the cost of thread creation and
destruction.

From the memory point of view, a multiprocessor may follow two di�erentiated designs. The use of
centralized shared memory leads to SMP (symmetric multiprocessor) machines using UMA (Uniform
Memory Access) memory. The use of distributed shared memory leads to DSM (Distributed Shared

Memory) machines using NUMA (Non-Uniform Memory Access) memory.

2.2. Centrilized Shared Memory Architectures

One reason for using centralized shared memory is the existence of greater and greater cache
memories within de processor, decreasing the e�ective demand on main memory.

In a cache memory we may distinguish to kind of data: private data and shared data. Problems
arise due to the existence of shared data, as they can be present in more than one cache memory at
the same time opening the opportunity for di�erent copies to have di�erent values. This problem is
known as cache coherence (or incoherence).

A memory system is said to be coherent if any read from a memory location returns the value that
has been most recently written in that memory location.

We need to distinguish between to problems that ar distinct, but highly related. Coherence deter-
mines which value is returned in case of a read. On the other hand, consistency determines in which
moment in time is the write made visible to the rest of processors. In this way, coherence de�nes the
behaviour of reads and writes on the same memory location, while consistency de�ne the behaviour of
reads and writes on one memory loction with respect to another memory location.

To be able to guarantee consistency, three conditions must hold: program order preservation, a
coherent view of memory, and write serialization.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
2 Computer Architecture



2.3. Alternatives to cache coherence

One coherent processor must o�er two fundamental properties for performance. On one hand shared
data migration and on the other hand data shared read data replication. Those properties may be
integrated into a cache coherence protocol

There are two families of cache coherence protocols: directory based protocols and snooping pro-
tocols. In directory based protocols the sharing state is kept in a data structure (the directory), that
may be centralized or distributed. In snooping protocols each cache keeps information of sharing state
for each block it stores.

2.4. Snooping protocols

In a snooping protocol tow strategies can be used: write invalidation and write update. In inva-
lidation, the protocol guarantees that a processos has exclusive access to a block before performing
the write over it. Previously, the rest of copies must be invalidated. In contrast, in write update each
time a write is performed on a memory location, this must be broadcasted to all caches, which would
eventually modify their own block copy. As this strategy makes use of more bandwidth, the invalidation
strategy is usually preferred.

In invalidation, whe an processor needs to invalidate a datum, it must acquire the memory bus and
broadcast the address to be invalidated. All processors will be observing (snooping) the bus to check
whether they have that address, and consequently, a copy of the invalidated block. In this way, the bus
is used as a serialization mechanism, excluding the possibility that simultaneous writes can happen.
In case a cache miss happens, the behaviour is di�erent depending on whether the write strategy is
write-through or write-back. With write-through, the main memory always holds the latest write that
has been performed and the datum must be taken from there. However, in the case of write-back, if a
processor has a modi�ed copy from that block, that processor cache will answer the cache miss from
the other processor.

The most basic protocol based on snooping and invalidation is the MSI protocol. This protocol
uses a state machine with three states for each block in cache memory. State transitions may generate
requests to processor cache or request to the bus. The three basic states are de�ned in terms of the
block state. The block may have been modi�ed (M), be shared (S), or have been invalidated (I):

There are serval extensions to the basic protocol. The MESI protocol adds a fourth exclusive state to
signal that the block resides in a single cache memory but it has not been modi�ed. Other alternatives
are the MESIF protocol (used in Intel Core i7) and the MOESI procol (sued in AMD Opteron).

2.5. Performance in SMPs

The use of cache coherency policies has impact on the miss rate and, consequently, on performance.
Two new kind of misses emerge. The true sharing misses and false sharing misses. The latter, are due
to two di�erent accesses from di�erent processors to words belonging to the same block.

3. Memory consistency models

This lesson has the following general structure:

1. Memory model.

2. Sequential consistency.

3. Other consistency models.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
3 Computer Architecture



4. Use case: Intel.

3.1. Memory model

A consistency memory model de�nes the set of rules that de�ne how processor generate read and
write operations are processed by the memory system. Thus, such model can be seen as a contract
between the programmer and the system.

In general, any memory consisntency model determines validity of possible optimizations that can
be performed on correct programs. Consequently, the memory model de�nes the interface betwee a
programmer and its transformers (as the compiler or the very hardware on which the program is
executed).

In case of a single processor system, memory operations happen in program order. That is, semantics
is de�ned by the sequential program order.

3.2. Sequential consistency

In case of multiprocessors, the simplest memory model to reason about is the sequential consistency
model. The concept of sequential consistency was de�ned by Leslie Lamport in 1979.

Sequential consistency establishes two constraints: program order and atomicity. On one hand,
memory operations from a program must be visible to all processes in program order. On the other
hand, all memory operations must be atomics requiring that nothing that a processors does after of
having seen the new value from a write is made visible to other processes before they have seen the
value of that write.

Sequential consistency constrains order of memory operations and it is the simplest model to
reason about prallel programs. However, even simple reorderings that are valid in the context of a
mono-processor, are no longer valid.

There is a set of su�cient conditions that guarantee the existence of sequential consistency. However,
there might be conditions less demanding.

3.3. Other consistency models

There are other consistency models less constrained than the sequential consistency model. Those
models can be de�ned in terms of the operations that can bypass other operations.

In weak ordering, operations performed on memory are divided into two kinds: data operations and
synchronization operations. Synchronization operations act as barriers. In this way, all synchronization
operations must be executed in program order and data operations admit reorderings as long as those
do not bypass a barrier imposed by synchronization operation.

Other more relaxed model than weak ordering is the release/acquire consistency. In such case,
synchronization operations may be from two types: release or acquire. An acquire operation must
complete before all subsequent memory accesses. In the case of release, all previous memory accesses
must complete before starting that release.

3.4. Use case: Intel

In the case of the Intel processor family, the memory model has been de�ned trhough a series of
processor generations.

On one hand, the model de�nes in which cases can the memory operations be considered atomics. It
als de�nes the di�erent conditions for a memory operation to be able to establish memory bus blocking.

On the other hand, the model also de�nes synchronization instructions (barrier instructions).

J. Daniel Garcia et al.

cbed ARCOS@uc3m
4 Computer Architecture



Finally, it de�nes the rules from the memory model within the processor as well as the memory
model ruls for accesses among multiple processors.

4. Synchronization

This lesson has the following genral structure:

1. Introduction.

2. Hardware primitives.

3. Locks.

4. Barriers.

4.1. Introduction

In shared memory systems, communication is performed through reads and writes on that shared
memory. To avoid problems with the concurrent access to memory it is necessary to establish synchro-
nization mechanisms for shared variables access. We may distinguish two cases: 1-1 communication
(communication between two processes) and collective communication (communication between an
arbitrary number of processors.

In 1-1 communication it is necessary to ensure that reception happens after sending. Generally, it is
necessary to ensure that memory accesses are performed guaranteeing mutual exclusion. In explanation,
only one of the processes may access at teh same time to a shared variable.

In collective communication, it is necessary to coordinate multiple accesses to variables guaranteeing
that writes are performed without interferences and reads wait until data is available. Again, it is
necessary that accesses to shared variables are performed with mutual exclusion. In that case, it is
possible to guarantee that a result is not read until all processes have executed their own critical
section.

4.2. Hardware primitives

The consistency model many be insu�cient and complex. Consequently, it is usually complemented
with hardware primitives for read-modify-write. Those can be from di�erent types as:

Test-and-set instruction.

Exchange instructions.

Fetch and operation instruction.

Compare and exchange instruction.

Store conditional instruction.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
5 Computer Architecture



4.3. Locks

A lock is a mechanism to ensure mutual exclusion. It has two associated operations: the acquisition
operation (lock) and the release operation (unlock).

The acquisition operation may imply a wait. There are two alternatives to implement the wait
mechanism: busy waiting and blocking. With busy waiting, the process remains in a loop which is
constantly querying for the value of the variable. This is the basic underlying idea behind a spin-lock.
With blocking, the process remains suspended and processor is given to another process. Consequently,
blocking requires the participation of a process scheduler, which is typically a part of the operating
system or from a run-time support system. While selecting the alternatives it is necessary to take into
account the run-time cost trade-o�s.

In general, in the design of a lock mechanisms there are three design elements: the acquisition
method, the waiting method and the release method.

The simplest implementation of a lock is based on using a shared variable that can take two values
(open and closed). To reduce the wait mechanism memory accesses, a technique that can be used is
the exponential delay. Another optimization, that can be used in some cases, is using the same variable
to synchronize and communicate.

Last but not leaset, another problem for the simplest implementations is that they do not �x the
lock acquisition order. This leads to starvation problems. The solution to this problem is to make the
lock to be acquired by request age guaranteeing FIFO order. To achieve that goal, tagged locks or
queue based locks can be used.

4.4. Barriers

A barrier allows to synchronize several processes at some point and guarantees that no process
passes the barrier until all have arrived. Thus, barriers are used to synchronize stages in a program.
The simplest implementation for a barrier is a centralized barrier were barrier is associated to a counter
for the processes that have arrived to it. To avoid problems derived from barrier reusing in the case of
loops, barriers with way inversion may be used. Finally, to avoid scalability and contention problems
when accessing shared variable, hierarchical barriers can be used where arriving and released processes
are structured as a tree.

5. Distributed shared memory

This lesson has the following general structure:

1. Introduction to distributed shared memory.

2. Directory based protocols basics.

3. Directory based protocol.

5.1. Introduction to distributed shared memory

Snooping protocols require communication with all caches both in every cache miss and in each
shared data write. However, its use is due to the absence of a centralized data structure. This results in
a low implementation cpost. When the processors number increases, the snooping protocol scalability
problems also increase.

In distributed shared memory (DSM) machines, coherence tra�c on bus may become a bottleneck.
The other alternative is the use of directory based protocols keeping the sharing state. Those may be

J. Daniel Garcia et al.

cbed ARCOS@uc3m
6 Computer Architecture



used at two levels. In SMP processors, a centralized directory in the last level cache may be used. In
DSM machines, a distributed directory may be used, avoiding bottlenecks derived from bus tra�c.

In general, the basic idea for a directory based protocol is to keep information about the state for
each cache block. This information includes a list of caches containing a copy of that block, as well as
the status bits for the block.

Within a multi-core processor, this information may be represented using one bit per core. Thus,
only invalidations to to caches marked in this bitmap are sent, avoiding broadcasting messages. While,
those messages are avoided, when the number of processor increases, the centralized directory causes
scalability problems.

The distributed directory solves those scalability problems distributing the directory with the me-
mory. Consequently, each directory has information on the blocks from the associated local memory.

5.2. Directory based protocol basics

A directory based protocol keeps the state for each block. This state can be: shared (one or more
nodes have the block in cache and the value in memory is up to date), non cached (no node has a copy
from the block) or modi�ed (only one node has a block copy in cache and it has overwritten it). In
particular, the protocol tries both read misses and writes in clean shared blocks.

5.3. Directory based protocol

In multi-core chips, internal coherence is kept through a centralized directory. That directory may
act as local directory in the case of distributed shared memory. In that case, the protocol implemen-
tation requires handling local and distributed transitions.

J. Daniel Garcia et al.

cbed ARCOS@uc3m
7 Computer Architecture


	1 Module structure
	2 Symmetric shared memory
	2.1 Introduction to multiprocessor architectures
	2.2 Centrilized Shared Memory Architectures
	2.3 Alternatives to cache coherence
	2.4 Snooping protocols
	2.5 Performance in SMPs

	3 Memory consistency models
	3.1 Memory model
	3.2 Sequential consistency
	3.3 Other consistency models
	3.4 Use case: Intel

	4 Synchronization
	4.1 Introduction
	4.2 Hardware primitives
	4.3 Locks
	4.4 Barriers

	5 Distributed shared memory
	5.1 Introduction to distributed shared memory
	5.2 Directory based protocol basics
	5.3 Directory based protocol


