
Parallel and concurrent programming models

J. Daniel García Sánchez (coordinator)
David Expósito Singh
Javier García Blas

Computer Architecture
ARCOS Group

Computer Science and Engineering Department
University Carlos III of Madrid

1. Module structure

This module is structured in three lessons:

Parallel programming with OpenMP. It presents the basic concepts of the OpenMP parallel
programming model through examples.

Concurrent programming in C++11. Introduces the C++11 concurrency model as a por-
table mechanism for concurrent programming.

Memory consistency model in C++. Reinforces memory consistency concepts through the
standard C++ memory model. Pay special attention to relaxed memory models.

2. Parallel programming with OpenMP

This lesson has the following general structure:

1. Introduction.

2. Threads in OpenMP.

3. Synchronization.

4. Parallel loops.

5. Synchronization in the master thread.

6. Data sharing.

7. Sections and scheduling.

J. Daniel Garcia et al.
cbed ARCOS@uc3m

1 Computer Architecture



2.1. Introduction

OpemMP is an API that allows to express parallel applications for shared memory systems, sim-
plifying the way you write programs. It consists of a set of compiler directives, a function library, and
a set of environment variables.

All OpenMP directives are indicated by a pragma directive that uses the omp pre�x. For example:

#pragma omp parallel
{

f () ;
g() ;

}

2.2. Threads in OpenMP

The parallelism in OpenMP follows the fork-join model, where a sequential application has parallel
sections. At the start of the program, there is a master thread that executes the sequential sections.
When you enter a parallel region (marked with a omp parallel directive), a set of threads is started.

For measuring the time taken to execute a section of code, you can use the function provided by
OpenMP (omp_get_wtime()).

2.3. Synchronization

OpenMP o�ers synchronization mechanisms for assisting programmer to avoid data races. The
library o�ers high-level mechanisms (critical, atomic, barrier and ordered) and low level (�ush and
locks).

The critical directive guarantees that only one thread can enter into the critical section at a time.
On the other hand, the atomic directive guarantees the atomic updates of a memory location.

2.4. Parallel loops

The parallel for directive performs loop division. That is, it distributes the iterations of a loop
between the available threads.

One of the most frequent operations in parallel loops is reduction, which is an accumulation opera-
tion performed in a loop. The reductions can be made on di�erent elementary operations, which must
be associative.

2.5. Synchronization in the master thread

A barrier allows all threads to be synchronized at one point so that all threads are expected to
reach that point.

Another way to synchronize is to use a section marked with the omp master directive. This section
will only be executed by the master thread. If you want to ensure that the section is executed by a
single thread, no matter which one, you can use the omp single directive. Orderly execution of a
reduction with omp ordered can also be employed.

OpenMP provides omp_set_lock() and omp_unset_lock() lock primitives that use the type
omp_lock_t.

2.6. Data sharing

In OpenMP, a variable can be shared or private.

J. Daniel Garcia et al.
cbed ARCOS@uc3m

2 Computer Architecture



A shared variable can be a global variable, a static variable, or an object stored in dynamic memory.
A private variable is a local variable in a function invoked from a parallel section or a local variable
de�ned in a block.

The omp clause can be used to control the storage attributes of a variable. The private directive
creates a local copy of a variable in each thread. The �rstprivate and lastprivate directives help
control the management of the initial and �nal values of the variables.

2.7. Sections and scheduling

A set of parallel sections can be de�ned within a parallel region. In this case, each section is passed
to a di�erent thread and all sections are synchronized with a �nalization barrier.

When executing parallel loops, you can select from three execution policies. The static policy
schedules blocks of iterations of the same size for each thread. The dynamic policy causes each thread
to take a number of iterations from one queue until all of them have been processed. The guided policy
causes each thread to take a group of iterations from a queue. In the latter case, as time passes, the
number of iterations is reduced each time.

3. Concurrent programming in C++11

This lesson has the following general structure:

Introduction to concurrency in C++.

Library overview.

Thread class.

Mutex objects and condition variables.

3.1. Introduction to concurrency in C ++.

The C++11 standard (ISO/IEC 14882: 2011) provides a concurrency model as part of the language
speci�cation. This is a signi�cant change compared to previous approaches, since it solves the problem
of concurrent code portability between di�erent platforms. In addition, it also solves the inherent
problems of concurrency solutions exclusively based on a library, since there are aspects that are most
satisfactorily solved with language support. Therefore, the C++11 concurrency solution covers both
aspects of the language and aspects of the standard library that accompanies it. On the other hand,
this standard has had a great in�uence on the standard C11 (ISO/IEC 9899:2011), which follows the
lines established by C++11.

From the language point of view, C++11 o�ers a new memory model (presented in the next lesson),
as well as a new type of variables with local storage (thread_local). The standard library o�ers a
family of atomic types, useful in the context of lock-free programming, as well as, a set of portable
abstractions for concurrency (thread, mutex, Lock, packaged_task, future).

3.2. Library overview

3.2.1. Threads

La abstracción de hilo de ejecución se ofrece a través de la clase std::thread y representa a un
hilo ofrecido por la plataforma. Como en cualquier solución de concurrencia, dos hilos pueden acceder
a un objeto compartido, lo que podría dar lugar a una carrera de datos.

J. Daniel Garcia et al.
cbed ARCOS@uc3m

3 Computer Architecture



Execution thread abstraction is provided through the std::thread class and represents a thread
o�ered by the platform. As in any concurrency solution, two threads can access a shared object, which
could lead to a data race.

In C++11, the threads provide a simpli�ed argument passing mechanism without having to perform
any type of conversions (casts).

In general, a thread can be constructed from any invocable object. This includes functions and
function objects as well as lambda expressions.

3.2.2. Access to shared data

A std::mutex is a type that allows controlling access with mutual exclusion to a shared resource.
It provides two basic acquisition operations: (lock) and (unlock). To avoid possible problems, such as
releasing miss or the problems derived from exceptions, a wrapper (unique_lock) is available. This
operation frees the lock on the destruction.

Another classic problem solved by the library is the acquisition of multiple locks. In this case, the
function lock() takes an arbitrary number of locks, allowing the acquisition of all in a single operation.

3.2.3. Waits

The standard library provides mechanisms for accessing various clocks. Of these, the high_resolution_clock
type is the highest resolution available, deserves special attention. The di�erences between two tem-
poral points (time di�erences) can be expressed in di�erent units that can be explicitly expressed
.

The sleep_for() function allows you to specify a wait for a certain amount of time. Note that this
function is in the nested namespace std::this_thread.

A condition variable is a mechanism that allows you to synchronize threads that access shared
resources. A condition variable allows you to specify that a thread waits for noti�cation. The wait
is associated with a mutex. The condition variable also provides two noti�cation operations (no-
tify_one() and notify_all().

3.2.4. Asynchronous tasks

An asynchronous task allows the simple deployment of the execution of a task, either in another
thread or as a deferred task. When an asynchronous task is invoked, a future is obtained, which is an
object that allows to return a value transporting it from one thread to another.

3.3. std::thread class

The std::thread class, introduced above, represents the thread abstraction o�ered by the platform
(either the hardware or the operating system). All threads that are created within a program share
the same address space which simpli�es memory sharing.

It is important to note that each thread that is created has its own memory stack. This poses
potential dangers to programs. On the other hand, if you pass a pointer or a non-constant reference
to another thread, access is given to the stack of the original thread. Also, passing a reference through
a capture of a lambda expression is giving access to the stack of the original thread. Why is this a
problem? If the original thread terminates, its stack is freed and this memory could be assigned to
another object, but other threads would still have references to that memory.

Objects in the std::thread class can not be copied. However they do support the movement
semantics, which allows a thread to be transferred from one context to another.

J. Daniel Garcia et al.
cbed ARCOS@uc3m

4 Computer Architecture



There are multiple ways to build threads. In all cases, one of the characteristics is that when
constructing the thread you can pass the arguments of the function to execute without having to do
type conversions or make unnecessary use of pointers.

One technique that is often used is the two-phase construction. For this, a class de�ned by the
constructor and the invocation operator is de�ned by each thread (operator()). In the �rst phase,
the object is constructed. In the second phase, a thread is created by passing the created object. This
technique is especially useful is complex structures of dependencies between threads.

Each thread has a unique identi�er (obtained by mythread.get_id(). Although the type of the
identi�ers is a type de�ned by each implementation, the set of requirements that must satisfy allows
the identi�ers can be stored in a memory data structure.

When it is desired to wait for the termination of a thread, the operation join() must be invoked.
If a thread object is destroyed without being invoked for it, the join() operation fails, and the library
invokes the terminate() function. There are di�erent alternatives to this solution. One possibility is
to de�ne a type of specialized thread whose destructor invokes join() whenever necessary. Another
solution is the use of unrelated threads. However this solution is usually indicated only in cases of
threads that act as demons.

3.4. Mutex objects and condition variables

The C++11 standard library o�ers multiple types of mutex. The simplest type is std::mutex. If
the object needs to be acquired more than once by the same thread (e.g. recursive functions) you can use
std::recursive_mutex instead. If it is necessary to use time-limit operations, std::timed_mutex
can be used. The properties of the latter two types are combined in std::timed_recursive_mutex.

The lock() and unlock() operations allow blocking and unlocking a mutex. In cases where the
blocking acquisition is not guaranteed, you can use try_lock(), which attempts to acquire the object
and returns a success/failure �ag.

In the case of std::timed_mutex operations, we can add additional operations to acquire a
mutex, indicating a time period in the form of duration (try_lock_for(dur)) or in the form of a
temporary point (try_lock_until(t)).

Complementing these types, the library o�ers condition variables. The type std::condition_variable
is optimized for use with std::mutex. In another case, the type std::condition_variable_any can
be used. It should be remembered that before destroying a variable condition, it should wake up all
the threads that are waiting in it or it runs the risk of generating a deadlock.

There are two noti�cation operations on a condition variable. The notify() operation wakes up
one of the threads waiting in it. The notify_all() operation wakes up all the threads that are waiting.

Wait operations always take as an argument a mutex. In this way, a wait() operation locks until
the last lock is acquired, passed as argument. You can specify a timeout as the second argument
(wait_for() or wait_until().

4. Memory consistency model in C++

This lesson has the following general structure:

1. Memory model.

2. Atomic types.

3. Ordering relations.

4. Consistency models.

J. Daniel Garcia et al.
cbed ARCOS@uc3m

5 Computer Architecture



5. Barriers.

4.1. Memory model

As previously mentioned, C++11 de�nes a concurrency model as part of the language. The ultimate
goal is to avoid the need to write code in lower-level languages for improved performance. In addition,
the library also incorporates a set of low-level synchronization operations.

A basic de�nition of the memory model is related to object. From this point of view, an object is
a storage region. That is, it is a sequence of one or more bytes. A memory location is an object of a
scalar type or a sequence of adjacent bit �elds. With this in mind, it can be said that an object of any
type is always stored in one or more memory locations.

The de�nition of memory location is important because the conditions that may eventually give
rise to a data race are de�ned in terms of the concept of memory location itself.

Thus, if two threads try to simultaneously access the same memory location and some of the
accesses is writing, there is a potential race condition. To prevent this race condition, it is necessary
to force an order between the memory access operations.

To force an order in the operations accessing to memory, a solution is to use high-level synchroni-
zation mechanisms. An alternative that may be in some cases more e�cient, although more complex,
is the use of atomic operations.

4.2. Atomic types

Atomic operations are indivisible operations. Therefore, if two threads perform read or write ope-
rations over the same variable, such operations are performed in some order and do not produce data
races. However, if any of the operations are not atomic, the behaviour is not de�ned.

The C++ library provides access to atomic operations through a set of types (atomic<T>).
Atomic operations are o�ered for integral types, pointers, and booleans. However, they are not o�ered
for �oating-point types.

Operations on atomic types support the speci�cation of the memory consistency model. By default,
the sequential consistency model is used, but more relaxed consistency models can be speci�ed.

4.3. Ordering relations

There are two relations that are used to reason about the behaviour of concurrent programs:
synchronizes-with and happens-before.

The relation synchronize-with is a relation that occurs between operations performed on atomic
types from di�erent threads. On the other hand, the relation happens-before is a relation that occurs
between operations occurring in the same thread.

4.4. Consistency models

The consistency model on which it is simpler is the sequential consistency, since in this case, the
program is consistent with a sequential view. That is, all operations are performed in some particular
order in a single thread. Although it is a model that simpli�es the reasoning, it has a greater cost in
performance.

In sequentially non-consistent models, there is no longer a global order of events and each thread
can have a di�erent view of the order in which they occur. Even so, all threads must agree on the order
of modi�cation of each variable. Among the non-consistent models are the relaxed consistency and the
release-acquire consistency models.

J. Daniel Garcia et al.
cbed ARCOS@uc3m

6 Computer Architecture



Operations that use a relaxed consistency do not participate in synchronize-with relations, although
if they participate in happens-before relations within the same thread. As a consequence, operations can
not be reordered within the same thread, but nothing can be assured about the ordering of operations
on di�erent threads.

The operations that use the release-acquire consistency mechanism need an intermediate level
between the sequential consistency and the relaxed consistency since they do not exactly establish the
order if they are establishing restrictions.

An interesting property is that, in many cases, the e�ect of sequential consistency can be obtained
by combining release-acquire consistency and relaxed consistency, whereby better performance can be
obtained.

4.5. Barriers

Barriers are synchronization operations that establish ordering between memory accesses without
modifying data. They are typically used to set restrictions on other accesses to atomic variables.

J. Daniel Garcia et al.
cbed ARCOS@uc3m

7 Computer Architecture


	1 Module structure
	2 Parallel programming with OpenMP
	2.1 Introduction
	2.2 Threads in OpenMP
	2.3 Synchronization
	2.4 Parallel loops
	2.5 Synchronization in the master thread
	2.6 Data sharing
	2.7 Sections and scheduling

	3 Concurrent programming in C++11
	3.1 Introduction to concurrency in C ++.
	3.2 Library overview
	3.2.1 Threads
	3.2.2 Access to shared data
	3.2.3 Waits
	3.2.4 Asynchronous tasks

	3.3 bluestd::thread class
	3.4 Mutex objects and condition variables

	4 Memory consistency model in C++
	4.1 Memory model
	4.2 Atomic types
	4.3 Ordering relations
	4.4 Consistency models
	4.5 Barriers


