
Concurrent programming in C++11

Concurrent programming in C++11
Computer Architecture

J. Daniel García Sánchez (coordinator)
David Expósito Singh

Francisco Javier García Blas

ARCOS Group
Computer Science and Engineering Department

University Carlos III of Madrid

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 1/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Introduction to concurrency in C++

1 Introduction to concurrency in C++

2 Library overview

3 Class thread

4 Mutex objects and condition variables

5 Conclusion

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 2/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Introduction to concurrency in C++

Motivation

C++11 (ISO/IEC 14882:2011) offers its own concurrency
model.

Minor revisions in C++14.
More expected for C++17.

Any compliant implementation must supply it.
Solves inherent problems from PThreads.
Portable concurrent code: Windows, POSIX, . . .

Implications:
Changes in the language.
Changes in the standard library.

Influence on C11 (ISO/IEC 9899:2011).
Important: Concurrency and parallelism are two related
but distinct concepts.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 3/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Introduction to concurrency in C++

Structure

C++ language offers:
A new memory model.
thread_local variables.

C++ standard library offers:

Atomic types.
Useful for portable lock free programming.

Portable abstractions for concurrency.
thread.
mutex.
lock.
packaged_task.
future.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 4/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

1 Introduction to concurrency in C++

2 Library overview

3 Class thread

4 Mutex objects and condition variables

5 Conclusion

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 5/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Threads

2 Library overview
Threads
Access to shared data
Waiting
Asynchronous execution

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 6/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Threads

Thread launching

A thread represented by class std::thread.
Usually represents an OS thread.

Launching a thread from a function

void f1 () ;
void f2 () ;

void g() {
thread t1{f1 }; // Launches thread executing f1()
thread t2{f2 }; // Launches thread executing f2()

t1 . join () ; // Waits until t1 terminates.
t2 . join () ; // Waits until t2 terminates.

}

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 7/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Threads

Shared objects

Two threads may access to a shared object.
Possibility for data races.

Access to shared variables

int x = 42;

void f () { ++x; }
void g() { x=0; }
void h() { cout << "Hello" << endl; }
void i () { cout << "Bye" << endl; }

void race() {
thread t1{ f }; thread t2{g};
t1 . join () ; t2 . join () ;

thread t3{h}; thread t4{ i };
t3 . join () ; t4 . join () ;

}

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 8/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Threads

Argument passing

Simplified argument passing without needing any casts.

Argument passing

void f1(int x) ;
void f2(double x, double y);

void g() {
thread t1{f1 , 10}; // Runs f1(10)
thread t2{f1 }; // Error
thread t3{f2 , 1.0} // Error
thread t4{f2 , 1.0, 1.0}; // Runs f2(1.0,1.0)
// ...
// Thread joins

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 9/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Threads

Threads and function objects

Function object: Object that can be invoked as a function.
operator () overload/redefinition.

Function object in a thread

struct myfunc {
myfunc(int val) : x{val } {} // Constructor. Initializes object .
void operator()() { do_something(x); } // Redefine operator()
int x;

};

void g() {
myfunc f1{10}; // Constructs object f1
f1 () ; // Invokes call operator f1 .operator()
thread t1{f1 }; // Runs f1() in a thread
thread t2{myfunc{20}}; // Construct temporal and invokes it
// ...
// Threads joins

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 10/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Access to shared data

2 Library overview
Threads
Access to shared data
Waiting
Asynchronous execution

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 11/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Access to shared data

Mutual exclusion

mutex allows to control access with mutual exclusion to
a resource.

lock(): Acquires associated lock.
unlock(): Releases associated lock.

Use of mutex

mutex m;
int x = 0;

void f () {
m.lock() ;
++x;
m.unlock();

}

Launching threads

void g() {
thread t1(f) ;
thread t2(f) ;
t1 . join () ;
t2 . join () ;
cout << x << endl;

}

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 12/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Access to shared data

Problems with lock()/unlock()

Possible problems:
Forgetting to release a lock.
Exceptions.

Solution: unique_lock.
Pattern: RAII (Resource Acquisition Is Initialization).

Automatic lock

mutex m;
int x = 0;

void f () {
// Acquires lock
unique_lock<mutex> l{m};
++x;

} // Releases lock

Launching threads

void g() {
thread t1(f) ;
thread t2(f) ;
t1 . join () ;
t2 . join () ;

cout << x << endl;
}

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 13/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Access to shared data

Acquiring multiple mutex

lock() allows for acquiring simultaneously several mutex.
Acquires all or none.
If some is blocked it waits releasing all of them.

Multiple acquisition

mutex m1, m2, m3;

void f () {
lock(m1, m2, m3);

// Access to shared data

// Beware: Locks are not released
m1.unlock();
m2.unlock();
m3.unlock()

}

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 14/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Access to shared data

Acquiring multiple mutex

Specially useful in cooperation with unique_lock

Multiple automatic acquisition

void f () {
unique_lock l1{m1, defer_lock};
unique_lock l2{m2, defer_lock};
unique_lock l3{m3, defer_lock};

lock(l1 , l2 , l3) ;
// Access to shared data

} // Automatic release

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 15/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Waiting

2 Library overview
Threads
Access to shared data
Waiting
Asynchronous execution

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 16/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Waiting

Timed waiting

Access to clock:
using namespace std::chrono;
auto t1 = high_resolution_clock::now();

Time difference:
auto dif = duration_cast<nanoseconds>(t2−t1);
cout << dif .count() << endl;

Specifying a wait:
this_thread :: sleep_for(microseconds{500});

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 17/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Waiting

Condition variables

Mechanism to synchronize threads when accessing
shared resources.

wait(): Wait on a mutex.
notify_one(): Awakens a waiting thread.
notify_all(): Awakens all waiting threads.

Producer/Consumer

class request;

queue<request> q; // Requests queue
condition_variable cv; //
mutex m;

void producer();
void consumer();

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 18/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Waiting

Consumer

void consumer() {
for (;;) {

unique_lock<mutex> l{m};

while (cv.wait(l)) ;

auto r = q. front () ;
q.pop();
l .unlock() ;

process(r);
};

}

Effect of wait:
1 Releases lock and waits

a notification.
2 Acquires the lock when

awaken.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 19/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Waiting

Producer

void producer() {
for (;;) {

request r = generate();

unique_lock<mutex> l{m};
q.push(r);

cv.notify_one() ;
}

}

Effects of notify_one():
1 Awakes to one thread

waiting on the condition.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 20/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Asynchronous execution

2 Library overview
Threads
Access to shared data
Waiting
Asynchronous execution

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 21/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Asynchronous execution

Asynchronous execution and futures

An asynchronous task allows simple launching of a task
execution:

In a different thread of execution.
As a deferred task.

A future is an object allowing that a thread can return a
value to the code section that invoked it.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 22/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Asynchronous execution

Asynchronous tasks invocation

#include <future>
#include <iostream>

int main() {
std :: future<int> r = std :: async(task, 1, 10);
other_task() ;
std :: cout << "Result= " << r.get() << std ::endl;
return 0;

}

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 23/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Library overview

Asynchronous execution

Using futures

General idea:
When a thread needs to pass a value to another thread it
sets the value into a promise.
Implementation takes care that the value is available in the
corresponding future.

Access to the future through f.get():
If a value has been assigned → it gets that value.
In other case → calling thread blocks until it is available.
Allows to transparently transfer exceptions among threads.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 24/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

1 Introduction to concurrency in C++

2 Library overview

3 Class thread

4 Mutex objects and condition variables

5 Conclusion

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 25/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Class thread

Abstraction of a thread represented through class thread.
One-to-one correspondence with operating system thread.
All threads in an application run in the same address
space.
Each thread has its own stack.
Dangers:

Pass a pointer or a non-const reference to another thread.
Pass a reference through capture in lambda expressions.

thread represents a link to a system thread.
Cannot be copied.
They can be moved.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 26/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Thread construction

A thread is constructed from a function and arguments that
mast be passed to that function.

Template with variable number of arguments.
Type safe.

Example

void f () ;
void g(int , double);

thread t1{ f }; // OK
thread t2{ f , 1}; // Error: Too many arguments

thread t3{g, 1, 0.5}; // OK
thread t4{g}; // Error: Missing arguments
thread t5{g, 1, "Hello" }; // Error: Wrong types

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 27/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Construction and references

Constructor of thread is a template with variable number of
arguments.
template <class F, class ...Args>
explicit thread(F&& f, Args&&... args);

Arguments passing to a thread is by value.
To force passing by reference:

Use a helper function for reference_wrapper.
Use lambdas and reference captures.

void f (record & r) ;

void g(record & s) {
thread t1{ f ,s }; // Copy of s
thread t2{ f , ref (s) }; // Reference to s
thread t3 {[&] { f (s) ; }}; // Reference to s

}

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 28/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Two-phase construction

Construction includes thread launching.
There is no separate operation to start execution.

Producer/Consumer

struct producer {
producer(queue<request> & q);
void operator()();
// ...

};

struct consumer {
consumer(queue<request> & q);
void operator()();
// ...

};

Stages

void f () {
// Stage 1: Construction
queue<request> q;
producer prod{q};
consumer cons{q};

// Stage 2: Launching
thread tp{prod};
thread tc {cons};

// ...

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 29/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Empty thread

Default constructor creates a thread without associated
execution task.
thread() noexcept;

Useful in combination with move constructor.
thread(thread &&) noexcept;

An execution takes can be moved from a thread to another
thread.

Original thread remains without associated execution task.

thread create_task();
thread t1 = create_task();
thread t2 = move(t1); // t1 is empty now

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 30/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Thread identity

Each thread has a unique identifier.
Type: thread::id.
If the thread is not associated with a thread get_id()
returns id{}.
Current thread identifier is obtained with
this_thread::get_id().

t.get_id() returns id{} if:
An execution task has not been assigned to it.
It has finished.
Task has been moved to another thread.
It has been detached (detach()).

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 31/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Operations on thread::id

Is an implementation dependent type, but it must allow:
Copying.
Comparison operators (==, <, ...).
Output to streams through operator «.
hash transformation through specialization
hash<thread::id>.

Example

void print_id (thread & t) {
if (t .get_id() == id {})

cout << " Invalid thread" << endl;
else {

cout << "Current thread: " << this_thread ::get_id() << endl;
cout << "Received thread: " << t .get_id() << endl;

}
}

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 32/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Joining

When a thread wants to wait for other thread termination, it
may use operation join().

t.join() → waits until t has finished.

Example

void f () {
vector<thread> vt;
for (int i=0; i< 8; ++i) {

vt .push_back(thread(f,i)) ;
}

for (auto & t : vt) { // Waits until all threads have finished
t . join () ;

}
}

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 33/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Periodic tasks

Initial idea

void update_bar() {
while (! task_has_finished()) {

this_thread :: sleep_for(chrono::second(1))
update_progress();

}
}

void f () {
thread t {update_bar};
t . join () ;

}

Problems?

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 34/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

What if I forget join?

When scope where thread was defined is exited, its
destructor is invoked.
Problem:

Link with operating system thread might be lost.
System thread goes on running but cannot be accessed.

If join() was not called, destructor invokes terminate().

Example

void update() {
for (;;) {

show_clock(steady_clock::now());
this_thread :: sleep_for(second{1});

}
}

void f () {
thread t {update};

}

terminate() is called when
exiting f().

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 35/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Destruction

Goal: Avoid a thread to survive its thread object.
Solution: If a thread is joinable its destructor invokes
terminate().

A thread is joinable if it is linked to a system thread.

Example

void check() {
for (;;) {

check_state();
this_thread :: sleep_for(second{10});

}
}

void f () {
thread t {check};

} // Destruction without join () −> Invokes terminate()

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 36/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Problems with destruction

Example

void f () ;
void g() ;

void example() {
thread t1{ f }; // Thread running task f
thread t2 ; // Empty thread

if (mode == mode1) {
thread tg {g};
// ...
t2 = move(tg); // tg empty, t2 running g()

}

vector<int> v{10000}; // Might throw exceptions
t1 . join () ;
t2 . join () ;

}

What if
constructor of v
throws an
exception?
What if end of
example is
reached with
mode==mode1?

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 37/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Automatic thread

RAII pattern can be used.
Resource Acquisition Is Initialization.

A joining thread

struct auto_thread : thread {
using thread::thread; // All thread constructors
~auto_thread() {

if (joinable ()) join () ;
}

};

Constructor acquires resource.
Destructor releases resource.
Avoids resource leakage.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 38/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Simplifying with RAII

Simpler code and higher safety.

Example

void example() {
auto_thread t1{f }; // Thread running task f
auto_thread t2; // Empty thread

if (modo == mode1) {
auto_thread tg {g};
// ...
t2 = move(tg); // tg empty, t2 running g()

}

vector<int> v{10000}; // Might throw exceptions
}

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 39/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Detached threads

A thread can be specified to go on running after destructor,
with detach().
Useful for task running as daemons.

Example

void update() {
for (;;) {

show_clock(steady_clock::now());
this_thread :: sleep_for(second{1});

}
}

void f () {
thread t {update};
t .detach();

}

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 40/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Problems with detached threads

Drawbacks:
Control of active threads is lost.
Uncertain whether the result generated by a thread can be
used.
Uncertain whether a thread has released its resources.
Access to objects that might have already been destroyed.

Recommendations:
Avoid using detached threads.
Move threads to other scope (via return value).
Move threads to a container in a larger scope.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 41/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

A hard to catch bug

Problem: Access to local variables from a detached thread
after destruction.

Example

void g() {
double x = 0;
thread t {[&x]{ f1 () ; x = f2 () ;}}; // If g has finished −> Problem
t .detach();

}

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 42/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Operations on current thread

Operations on current thread as global functions in name
subspace this_thread.

get_id(): Gets identifier from current thread.
yield(): Allows potential selection of another thread for
execution.
sleep_until(t): Wait until a certain point in time.
sleep_for(d): Wait for a given duration of time.

Timed waits:
If clock can be modified, wait_until() is affected.
If clock can be modified, wait_for() is not affected.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 43/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

Thread local variables

Alternative to static as storage specifier: thread_local.
A variable static has a single shared copy for all threads.
A variable thread_local has a per thread copy.

Lifetime: thread storage duration.
Starts before its first usage in thread.
Destroyed upon thread exit.

Reasons to used thread local storage:
Transform data from static storage to thread local storage.
Keep data caches to be thread local (exclusive access).

Important in machines with separate caches and coherence
protocols.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 44/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Class thread

A function with computation caching

thread_local map<int, int> cache;

int compute_key(int x) {
auto i = cache.find(x) ;
if (i != cache.end()) return i−>second;
return cache[arg] = slow_and_complex_algorithm(arg);

}

vector<int> generate_list (vector<int> v) {
vector<int> r ;
for (auto x : v) {

r .push_back(compute_key(x));
}

}

Avoids need for synchronization.
Some computations might be repeated in multiple threads.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 45/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Mutex objects and condition variables

1 Introduction to concurrency in C++

2 Library overview

3 Class thread

4 Mutex objects and condition variables

5 Conclusion

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 46/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Mutex objects and condition variables

Mutex objects

4 Mutex objects and condition variables
Mutex objects
Condition variables

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 47/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Mutex objects and condition variables

Mutex objects

mutex classification

Represent exclusive access to a resource.
mutex: Basic non-recursive mutex.
recursive_mutex: A mutex that can be acquired more than
once from the same thread.
timed_mutex: Non-recursive mutex with timed operations.
recursive_timed_mutex: Recursive mutex with timed
operations.

Only a thread can own a mutex at a given time.
Acquire a mutex → Get exclusive access to object.

Blocking operation.
Release a mutex → Release exclusive access to object.

Allows another thread to get access.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 48/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Mutex objects and condition variables

Mutex objects

Operations

Construction and destruction:
Can be default constructed.
Cannot be neither copied nor moved.
Destructor may lead to undefined behavior if mutex is not
free.

Acquire and release:
m.lock(): Acquires mutex in a blocking mode.
m.unlock(): Releases mutex.
r = m.try_lock(): Tries to acquire mutex, returning success
indication.

Others:
h = m.native_handle(): Returns platform dependent
identifier of type native_handle_type.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 49/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Mutex objects and condition variables

Mutex objects

Example

Exclusive access

mutex mutex_output;

void print (int x) {
mutex_output.lock();
cout << x << endl;
mutex_output.unlock();

}

void print (double x) {
mutex_output.lock();
cout << x << endl;
mutex_output.unlock();

}

Threads launch

void f () {
thread t1{ print , 10};
thread t2(print , 5.5};
thread t3(print , 3);

t1 . join () ;
t2 . join () ;
t3 . join () ;

}

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 50/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Mutex objects and condition variables

Mutex objects

Errors in mutual exclusion

In case of error exception system_error is thrown.
Error codes:

resource_deadlock_would_occur.
resource_unavailable_try_again.
operation_not_permitted.
device_or_resource_busy.
invalid_argument.

mutex m;
try {

m.lock() ;
//
m.lock() ;

}
catch (system_error & e) {

cerr << e.what() << endl;
cerr << e.code() << endl;

}

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 51/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Mutex objects and condition variables

Mutex objects

Deadlines

Operations supported by timed_mutex and
recursive_timed_mutex.

Add acquire operations with indication of deadlines.
r = m.try_lock_for(d): Try to acquire mutex for a duration
d, returning success indication.
r = m.try_lock_until(t): Try to acquire mutex until a point in
time returning success indication.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 52/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Mutex objects and condition variables

Condition variables

4 Mutex objects and condition variables
Mutex objects
Condition variables

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 53/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Mutex objects and condition variables

Condition variables

Condition variables

Synchronizing operations among threads.
Optimized for class mutex (alternative
condition_variable_any)).
Construction and destruction:

condition_variable c{}: Creates a condition variable
Might throw system_error.

Destructor: Destroys condition variable.
Requires no thread is waiting on condition.

Cannot be neither copied nor moved.
Before destruction all threads blocked in variable need to
be notified.

Or they could be blocked forever.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 54/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Mutex objects and condition variables

Condition variables

Notification/waiting operations

Notification:
c.notify_one(): Wakes up one of waiting threads.
c.notify_all(): Wakes up all waiting threads.

Unconditional waiting (l of type unique_lock<mutex>):
c.wait(l): Blocks until it gets to acquire lock l.
c.wait_until(l,t): Blocks until it gets to acquire lock l or time
t is reached.
c.wait_for(l,t): Blocks until it gets to acquire lock l or
duration d elapses.

Waiting with predicates.
Takes as additional arguments a predicate that must be
satisfied.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 55/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Mutex objects and condition variables

Condition variables

Revisiting producer/consumer

Predicate injection in wait

void consumer() {
for (;;) {

unique_lock<mutex> l{m};

cv.wait(l , [this]{ return !q.empty();}) ;

auto r = q. front () ;
q.pop();
l .unlock() ;

process(r);
};

}

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 56/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Conclusion

1 Introduction to concurrency in C++

2 Library overview

3 Class thread

4 Mutex objects and condition variables

5 Conclusion

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 57/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Conclusion

Summary

C++ offers a concurrency model through a combination of
language and library.
Class thread abstracts an OS thread.
Synchronization through a combination of mutex and
condition_variable.
std::async offers a high-level mechanism to run threads.
std::future allows result and exceptions transfer among
threads.
thread_local offer portable support for thread local
storage.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 58/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Conclusion

References

C++ Concurrency in Action. Practical multithreading.
Anthony Williams.
Chapters 2, 3, and 4.

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 59/60

http://www.arcos.inf.uc3m.es

Concurrent programming in C++11

Conclusion

Concurrent programming in C++11
Computer Architecture

J. Daniel García Sánchez (coordinator)
David Expósito Singh

Francisco Javier García Blas

ARCOS Group
Computer Science and Engineering Department

University Carlos III of Madrid

cbed – Computer Architecture – ARCOS Group – http://www.arcos.inf.uc3m.es 60/60

http://www.arcos.inf.uc3m.es

	Introduction to concurrency in C++
	Library overview
	Threads
	Access to shared data
	Waiting
	Asynchronous execution

	Class thread
	Mutex objects and condition variables
	Mutex objects
	Condition variables

	Conclusion

